Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37676726

RESUMO

Sjögren's Disease (SjD) is a systemic autoimmune disease characterized by lymphocytic inflammation of the lacrimal and salivary glands (SG), dry eyes and mouth, and systemic symptoms. SARS-CoV-2 may trigger the development or progression of autoimmune diseases. To test this, we used a mouse model of SARS-CoV-2 infection and convalescent patients' blood and SG in order to understand the development of SjD-like autoimmunity after infection. First, SARS-CoV-2-infected human angiotensin-converting enzyme 2 (ACE2) transgenic mice exhibited decreased salivation, elevated antinuclear antibodies (ANA), and lymphocytic infiltration in the lacrimal and SG. The sera from patients with COVID-19 sera showed increased ANA (i.e., anti-SSA [Sjögren's-syndrome-related antigen A]/anti-Ro52 and anti-SSB [SS-antigen B]/anti-La). Male patients showed elevated anti-SSA compared with female patients, and female patients exhibited diverse ANA patterns. SG biopsies from convalescent COVID-19 patients were microscopically similar to SjD SG with focal lymphocytic infiltrates in 4 of 6 patients and 2 of 6 patients exhibiting focus scores of at least 2. Lastly, monoclonal antibodies produced in recovered patients blocked ACE2/spike interaction and cross-reacted with nuclear antigens. Our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD-affected SGs were histologically indistinguishable from convalescent COVID-19 patients. The results implicate that SARS-CoV-2 could be an environmental trigger for SjD.


Assuntos
COVID-19 , Síndrome de Sjogren , Humanos , Camundongos , Masculino , Feminino , Animais , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , Camundongos Transgênicos , Fenótipo
2.
medRxiv ; 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36324812

RESUMO

Objectives: Sjögren's Disease (SjD) is a chronic and systemic autoimmune disease characterized by lymphocytic infiltration and the development of dry eyes and dry mouth resulting from the secretory dysfunction of the exocrine glands. SARS-CoV-2 may trigger the development or progression of autoimmune diseases, as evidenced by increased autoantibodies in patients and the presentation of cardinal symptoms of SjD. The objective of the study was to determine whether SARS-CoV-2 induces the signature clinical symptoms of SjD. Methods: The ACE2-transgenic mice were infected with SARS-CoV-2. SJD profiling was conducted. COVID-19 patients' sera were examined for autoantibodies. Clinical evaluations of convalescent COVID-19 subjects, including minor salivary gland (MSG) biopsies, were collected. Lastly, monoclonal antibodies generated from single B cells of patients were interrogated for ACE2/spike inhibition and nuclear antigens. Results: Mice infected with the virus showed a decreased saliva flow rate, elevated antinuclear antibodies (ANAs) with anti-SSB/La, and lymphocyte infiltration in the lacrimal and salivary glands. Sera of COVID-19 patients showed an increase in ANA, anti-SSA/Ro52, and anti-SSB/La. The male patients showed elevated levels of anti-SSA/Ro52 compared to female patients, and female patients had more diverse ANA patterns. Minor salivary gland biopsies of convalescent COVID-19 subjects showed focal lymphocytic infiltrates in four of six subjects, and 2 of 6 subjects had focus scores >2. Lastly, we found monoclonal antibodies produced in recovered patients can both block ACE2/spike interaction and recognize nuclear antigens. Conclusion: Overall, our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD salivary glands were histologically indistinguishable from convalescent COVID-19 subjects. The results potentially implicate that SARS-CoV-2 could be an environmental trigger for SjD. Key Messages: What is already known about this subject?SAR-CoV-2 has a tropism for the salivary glands. However, whether the virus can induce clinical phenotypes of Sjögren's disease is unknown.What does this study add?Mice infected with SAR-CoV-2 showed loss of secretory function, elevated autoantibodies, and lymphocyte infiltration in glands.COVID-19 patients showed an increase in autoantibodies. Monoclonal antibodies produced in recovered patients can block ACE2/spike interaction and recognize nuclear antigens.Minor salivary gland biopsies of some convalescent subjects showed focal lymphocytic infiltrates with focus scores.How might this impact on clinical practice or future developments?Our data provide strong evidence for the role of SARS-CoV-2 in inducing Sjögren's disease-like phenotypes.Our work has implications for how patients will be diagnosed and treated effectively.

3.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886918

RESUMO

STAT3 and KRAS regulate cell proliferation, survival, apoptosis, cell migration, and angiogenesis. Aberrant expression of STAT3 and mutant active forms of KRAS have been well-established in the induction and maintenance of multiple cancers. STAT3 and KRAS mutant proteins have been considered anti-cancer targets; however, they are also considered to be clinically "undruggable" intracellular molecules, except for KRAS(G12C). Here we report a first-in-class molecule, a novel, single domain camelid VHH antibody (15 kDa), SBT-100, that binds to both STAT3 and KRAS and can penetrate the tumor cell membrane, and significantly inhibit cancer cell growth. Additionally, SBT-100 inhibits KRAS GTPase activity and downstream phosphorylation of ERK in vitro. In addition, SBT-100 inhibits the growth of multiple human cancers in vitro and in vivo. These results demonstrate the feasibility of targeting hard-to-reach aberrant intracellular transcription factors and signaling proteins simultaneously with one VHH to improve cancer therapies.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos Imunológicos , Anticorpos de Domínio Único , Anticorpos Biespecíficos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mutação , Neoplasias/imunologia , Neoplasias/terapia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator de Transcrição STAT3 , Anticorpos de Domínio Único/farmacologia
4.
Stem Cells Dev ; 15(1): 79-86, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16522165

RESUMO

Bone marrow-derived mesenchymal stem cells (MSCs) are readily accessible adult stem cells that are capable of self-renewal and multilineage differentiation. Human MSCs have been well described and used in xenogenic models for investigation, but rodent MSCs, if available, would eliminate problems associated with transplantation across a species barrier. Here we describe an effective method to generate rat MSCs and use these cells to target gene delivery in vivo. MSCs that were capable of retaining their differentiation potential after several population doublings in culture were generated from rat bone marrow. Marrow-derived MSCs were enriched and infected with an adenoviral vector carrying the heme oxygenase gene (Ad5/HO-1). Transfected rodent MSCs retained their differentiation potential, even after 10 passages, as determined by their ability to differentiate into adipocytes. Western analyses clearly indicated that Ad5/HO-1-transfected rodent MSCs exhibited increased HO-1 expression. Trafficking of fluorescent rat MSCs was evaluated 24 and 48 h after MSC infusion. Most of the infused cells accumulated in the lungs of recipients where they expressed HO-1. Thus, bone marrow-derived MSCs are useful for gene delivery replacement of the products of deficient genes. These cells may be useful for potentiation of wound healing because they retain their pluripotential differentiation ability.


Assuntos
Adenoviridae/metabolismo , Adipogenia/genética , Heme Oxigenase-1/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Adenoviridae/química , Adulto , Animais , Células da Medula Óssea , Diferenciação Celular , Fluoresceínas/química , Heme Oxigenase-1/genética , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Endogâmicos Lew , Succinimidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...