RESUMO
Antimicrobial resistance is a global public health problem and is primarily driven by the widespread overuse of antibiotics. However, antimicrobial use data in animals are not readily available due to the absence of a national database in many developing countries, including Nepal. This study was conducted to estimate the quantities of antimicrobials available in Nepal as an indicator of their use in food-producing animals between 2018 and 2020. Data were collected through surveys targeting major stakeholders: (i) the Department of Drug Administration (DDA), the Government of Nepal (GoN) for the authorized antimicrobials for veterinary use in Nepal, (ii) veterinary pharmaceuticals for antimicrobials produced in Nepal, (iii) the DDA and Veterinary Importers Association for antimicrobials bought by veterinary drug importers, and (iv) the Department of Customs, GoN, for antibiotics sourced through customs. Data showed that in the 3 years, a total of 96 trade names, comprising 35 genera of antibiotics representing 10 classes, were either produced or imported in Nepal. In total, 91,088 kg, 47,694 kg, and 45,671 kg of active ingredients of antimicrobials were available in 2018, 2019, and 2020, respectively. None of the antibiotics were intended for growth promotion, but were primarily for therapeutic purposes. Oxytetracycline, tilmicosin, and sulfadimidine were among the most-used antibiotics in Nepal in 2020. Oxytetracycline was primarily intended for parenteral application, whereas tilmicosin was solely for oral use. Sulfadimidine was available for oral use, except for a small proportion for injection purposes. Aminoglycosides, fluroquinolones, nitrofurans, sulfonamides, and tetracyclines were mostly produced locally, whereas cephalosporins, macrolides and "other" classes of antimicrobials were imported. Amphenicols and penicillins were exclusively imported and nitrofurans were produced locally only. In general, except for tetracyclines, the volume of antimicrobials produced locally and/or imported in 2020 was lower than that in 2018, which corresponded to a decreasing trend in total antimicrobials available. Furthermore, the subsequent years have seen a decrease in the use of critically important antibiotics, particularly class I antibiotics. Finally, this study has firstly established a benchmark for future monitoring of antimicrobial usage in food-producing animals in Nepal. These data are useful for risk analysis, planning, interpreting resistance surveillance data, and evaluating the effectiveness of prudent use, efforts, and mitigation strategies.