Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553609

RESUMO

Cytosine base editors (CBEs) are effective tools for introducing C-to-T base conversions, but their clinical applications are limited by off-target and bystander effects. Through structure-guided engineering of human APOBEC3A (A3A) deaminase, we developed highly accurate A3A-CBE (haA3A-CBE) variants that efficiently generate C-to-T conversion with a narrow editing window and near-background level of DNA and RNA off-target activity, irrespective of methylation status and sequence context. The engineered deaminase domains are compatible with PAM-relaxed SpCas9-NG variant, enabling accurate correction of pathogenic mutations in homopolymeric cytosine sites through flexible positioning of the single-guide RNAs. Dual adeno-associated virus delivery of one haA3A-CBE variant to a mouse model of tyrosinemia induced up to 58.1% editing in liver tissues with minimal bystander editing, which was further reduced through single dose of lipid nanoparticle-based messenger RNA delivery of haA3A-CBEs. These results highlight the tremendous promise of haA3A-CBEs for precise genome editing to treat human diseases.

2.
Nat Protoc ; 18(7): 2221-2255, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277562

RESUMO

Programmable cytosine base editors show promising approaches for correcting pathogenic mutations; yet, their off-target effects have been of great concern. Detect-seq (dU-detection enabled by C-to-T transition during sequencing) is an unbiased, sensitive method for the off-target evaluation of programmable cytosine base editors. It profiles the editome by tracing the editing intermediate dU, which is introduced inside living cells and edited by programmable cytosine base editors. The genomic DNA is extracted, preprocessed and labeled by successive chemical and enzymatic reactions, followed by biotin pull-down to enrich the dU-containing loci for sequencing. Here, we describe a detailed protocol for performing the Detect-seq experiment, and a customized, open-source, bioinformatic pipeline for analyzing the characteristic Detect-seq data is also provided. Unlike those previous whole-genome sequencing-based methods, Detect-seq uses an enrichment strategy and hence is endowed with great sensitivity, a higher signal-to-noise ratio and no requirement for high sequencing depth. Furthermore, Detect-seq is widely applicable for both mitotic and postmitotic biological systems. The entire protocol typically takes 5 d from the genomic DNA extraction to sequencing and ~1 week for data analysis.


Assuntos
Biotina , Edição de Genes , Edição de Genes/métodos , Citosina , Genoma , DNA/genética , Sistemas CRISPR-Cas
3.
Nat Commun ; 14(1): 874, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797253

RESUMO

Expanding mitochondrial base editing tools with broad sequence compatibility is of high need for both research and therapeutic purposes. In this study, we identify a DddA homolog from Simiaoa sunii (Ddd_Ss) which can efficiently deaminate cytosine in DC context in double-stranded DNA (dsDNA). We successfully develop Ddd_Ss-derived cytosine base editors (DdCBE_Ss) and introduce mutations at multiple mitochondrial DNA (mtDNA) loci including disease-associated mtDNA mutations in previously inaccessible GC context. Finally, by introducing a single amino acid substitution from Ddd_Ss, we successfully improve the activity and sequence compatibility of DdCBE derived from DddA of Burkholderia cenocepacia (DdCBE_Bc). Our study expands mtDNA editing tool boxes and provides resources for further screening and engineering dsDNA base editors for biological and therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Mitocôndrias/genética , DNA Mitocondrial/genética , Citosina
4.
Front Genome Ed ; 4: 929929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958049

RESUMO

Cas12a is a type V-A CRISPR-Cas RNA-guided endonuclease. It cleaves dsDNA at specific site, and then is activated for nonspecific ssDNA cleavage in trans in vitro. The immune function of the trans activity is still unknown. To address this question, we constructed a Cas12a targeting system in Escherichia coli, where Cas12a cleaved a high-copy target plasmid to unleash the trans ssDNA cleavage activity. Then, we analyzed the effect of the Cas12a targeting on a non-target plasmid and a ssDNA phage. The results show that Cas12a efficiently eliminates target plasmid but exerts no impact on the maintenance of the non-target plasmid or plague formation efficiency of the phage. In addition, a two-spacer CRISPR array, which facilitates target plasmid depletion, still has no detectable effect on the non-target plasmid or phage either. Together, the data suggest that the trans ssDNA cleavage of Cas12a does not contribute to immunity in vivo.

5.
Nature ; 606(7915): 804-811, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551512

RESUMO

DddA-derived cytosine base editors (DdCBEs)-which are fusions of split DddA halves and transcription activator-like effector (TALE) array proteins from bacteria-enable targeted C•G-to-T•A conversions in mitochondrial DNA1. However, their genome-wide specificity is poorly understood. Here we show that the mitochondrial base editor induces extensive off-target editing in the nuclear genome. Genome-wide, unbiased analysis of its editome reveals hundreds of off-target sites that are TALE array sequence (TAS)-dependent or TAS-independent. TAS-dependent off-target sites in the nuclear DNA are often specified by only one of the two TALE repeats, challenging the principle that DdCBEs are guided by paired TALE proteins positioned in close proximity. TAS-independent off-target sites on nuclear DNA are frequently shared among DdCBEs with distinct TALE arrays. Notably, they co-localize strongly with binding sites for the transcription factor CTCF and are enriched in topologically associating domain boundaries. We engineered DdCBE to alleviate such off-target effects. Collectively, our results have implications for the use of DdCBEs in basic research and therapeutic applications, and suggest the need to thoroughly define and evaluate the off-target effects of base-editing tools.


Assuntos
Núcleo Celular , Citosina , Edição de Genes , Mitocôndrias , Mutação , Núcleo Celular/genética , Citosina/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...