Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Nat Prod Res ; : 1-5, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229854

RESUMO

The roots of Diospyro kaki L.f., known for their anti-inflammatory, antimicrobial and antidiabetic properties, are the source of dimeric naphthoquinones, including dinaphthodiospyrol H. α-Glucosidase is an enzyme involved in regulation of blood glucose levels and its inhibition helps in the control of the postprandial hyperglycaemia. In this study, an in vitro evaluation of dinaphthodiospyrol H was carried out and the compound inhibited α-glucosidase with an IC50 value of 57.38 ± 0.87 µg/mL, revealing a significant potential that supports the traditional application of D. kaki in the treatment of diabetes mellitus. Additionally, computational studies, including docking and molecular dynamics, were used to investigate ligand-target complex and showed that the compound targets the same site with which acarbose interacts. Overall, the findings provide new basis to translate the traditional use of D. kaki into modern medicinal chemistry.

2.
Braz J Biol ; 84: e282479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39230079

RESUMO

The phytosociological survey was conducted during 2018-2020. The research area was classified into five ecological zones based on habitat, physiognomy and species composition. Pc-Ord software was used for cluster analysis and four vegetation communities were established. The Quercus baloot-Quercus incana community is situated in Sair at an altitude of 1196 (mean ± SE) m altitude with a 14.1 ± 0 slope angle and contains eleven tree species. The Pinus wallichiana- Ailanthus altissima community had a relatively small number of tree species reported in Shakawlie at 1556 (mean ± SE) with a 17.5 ± 0 slope angle. The Pinus wallichiana- Quercus incana community is distributed in Wali Kandao and Mangi Kandao at altitudes of 2030.5 (mean ± SE) m and the slope angle was 19.2 ± 1.4. This community possesses a total of twenty-one tree species and is highly diverse. Similarly, the Populus alba - Platanus orientalis group was present in Banr Pate, with an altitude of 1613 (mean ± SE) m and a 16.3 slope angle. The principal component analysis (PCA) and non-metric multidimensional scaling (NMS) ordination methods were applied to study the relationships between ecological and soil variables with trees species. The NMS ordination of axis 1 was significantly correlated with Sand% (p<0.2), Nitrogen% (p<0.1) and Pb (mg/kg) (r= 0.876751, p<0.05), while the ordination of axis 2 was significantly correlated with Silt% (p<0.2), Sand% (p<0.2), Organic matter% (p<0.2), K (mg/kg) (r=0.882433, p<0.02), Fe (mg/kg)(r=0.614833, p<0.2), Ca (mg/kg) (r=0.721712, p< 0.2) and Zn (mg/kg) (r=0.609545, p<0.2). Similarly, the PCA ordination of axis 1 revealed that it was significantly correlated with phosphorus, calcium and slope angle, while that of axis 2 was significantly correlated with altitude, zinc and manganese.


Assuntos
Florestas , Árvores , Árvores/classificação , Paquistão , Biodiversidade , Altitude , Ecossistema , Solo/química
3.
Phytomedicine ; 133: 155936, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128304

RESUMO

The global epidemic of Sickle cell anemia (SCA) is causing thousands of children to die. SCA, a genetic disorder affecting the hemoglobin-globin chain, affects millions globally. The primary physiological issue in these patients is the polymerization of sickle hemoglobin within their red blood cells (RBCs) during their deoxygenating state. The RBC undergoes a sickle shape due to the polymerization of mutant hemoglobin within it and membrane deformation during anoxic conditions. To prevent complications, it is essential to effectively stop the sickling of RBCs of the patients. Various medications have been studied for treating SCA patients, focusing on antisickling, γ-globulin induction, and antiplatelet action. Natural and synthetic anti-sickling agents can potentially reduce patient clinical morbidity. Numerous clinical trials focused on using natural remedies for the symptomatic therapy of SCA. Medicinal plants and phytochemical agents have antisickling properties. Recent studies on plant extracts' natural compounds have primarily focused on in vitro RBCs sickling studies, with limited data on in vivo studies. This review discussed the potential role of phytoconstituents in the management of SCA.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Compostos Fitoquímicos , Extratos Vegetais , Anemia Falciforme/tratamento farmacológico , Humanos , Antidrepanocíticos/farmacologia , Antidrepanocíticos/uso terapêutico , Extratos Vegetais/farmacologia , Compostos Fitoquímicos/farmacologia , Fitoterapia , Hemoglobina Falciforme , Plantas Medicinais/química , Eritrócitos/efeitos dos fármacos
4.
Mini Rev Med Chem ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39192639

RESUMO

While the use of plants in traditional medicine dates back to 1500 B.C., modern advancements led to the development of innovative therapeutic techniques. On the other hand, in the field of anti-infective agents, lack of efficacy and the onset of resistance stimulate the search for novel agents. Genus Artemisia is one of the most diverse among perennial plants with a variety of species, properties, and chemical components. The genus is known for its therapeutic values and, in particular, for its role in the origin of antimalarial agents derived from artemisinin. In this review, we aim to provide an updated overview of the evolution of natural and natureinspired compounds related to the genus Artemisia that have been proven, in vitro and in vivo, to possess antimalarial properties. An overview of the chemical composition and a description of the ethnopharmacological aspects will be presented, as well as an updated report on in vitro and in vivo evidence that allowed the translation of artemisinin and its derivatives from traditional chemistry into modern medicinal chemistry. The biological and structural properties will be discussed, also dedicating attention to the challenging tasks that still are open, such as the identification of optimal combination strategies, the routes of administration, and the full assessment of the mechanism of action.

6.
Heliyon ; 10(13): e33327, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027488

RESUMO

This investigation portrays the phytochemical screening, green synthesis, characterization of Fe and Zn nanoparticles, their antibacterial, anti-inflammation, cytotoxicity, and anti-thrombolytic activities. Four dissimilar solvents such as, n-hexane, chloroform, ethyl acetate and n-butanol were used to prepare the extracts of Phlomis cashmeriana Royle ex Benth. This is valued medicinal plant (Family Lamiaceae), native to mountains of Afghanistan and Kashmir. In the GC-MS study of its extract, the identified phytoconstituents have different nature such as terpenoids, alcohol and esters. The synthesized nanoparticles were characterized by SEM, UV, XRD, and FT-IR. The phytochemical analysis showed that the plant contains TPC (total phenolic content) 297.51 mg GAE/g and TFC (total flavonoid content) 467.24 mg CE/g. The cytotoxicity values have shown that the chloroform, n-butanol and aqueous extracts were more toxic than other extracts. The anti-inflammatory potential of n-butanol and aqueous extracts was found higher than all other extracts. Chloroform and n-hexane extracts have low MIC values against both E. coli and S. aureus bacterial strains. Chloroform and aqueous extracts have great anti-thrombolytic potential than all other extracts. Overall, this study successfully synthesized the nanoparticles and provides evidence that P. cashmeriana have promising bioactive compounds that could serve as potential source in the drug formulation.

7.
Technol Health Care ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39031400

RESUMO

BACKGROUND: Ficus benghalensis has been used by local health care practitioners to treat pain, inflammation, rheumatism, and other health issues. OBJECTIVE: In this study, the crude extract and diverse fractions, along with the isolated compound of F. benghalensis were examined for their roles as muscle relaxants, analgesics, and sedatives. METHODS: The extract and isolated compound 1 were screened for muscle-relaxant, analgesic, and sedative actions. The acetic acid-mediated writhing model was utilized for analgesic assessment, the muscle relaxant potential was quantified through traction and inclined plan tests, and the open field test was applied for sedative effects. RESULTS: The extract/fractions (25, 50, and 100 mg/kg) and isolated compounds (2.5, 5, 10, and 20 mg/kg) were tested at various doses. A profound (p< 0.001) reduce in the acetic acid-mediated writhing model was observed against carpachromene (64.44%), followed by ethyl acetate (60.67%) and methanol (58.42%) fractions. A marked (p< 0.001) muscle relaxant activity was noticed against the isolated compound (71.09%), followed by ethyl acetate (66.98%) and methanol (67.10%) fractions. Regarding the sedative effect, a significant action was noted against the isolated compound (71.09%), followed by ethyl acetate (66.98%) and methanol (67.10%) fractions. Furthermore, the binding modes of the isolated compounds were explored using molecular docking. The molecular docking study revealed that the isolated compound possessed good binding affinity for COX2 and GABA. Our isolated compound may possess inhibitory activity against COX2 and GABA receptors. CONCLUSION: The extract and isolated compounds of Ficus benghalensis can be used as analgesics, muscle relaxants, and sedatives. However, detailed molecular and functional analyses are essential to ascertain their function as muscle relaxants, analgesics, and sedatives.

8.
ACS Appl Mater Interfaces ; 16(28): 36131-36141, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38979627

RESUMO

Cancer immunotherapy is developing as the mainstream strategy for treatment of cancer. However, the interaction between the programmed cell death protein-1 (PD-1) and the programmed death ligand 1 (PD-L1) restricts T cell proliferation, resulting in the immune escape of tumor cells. Recently, immune checkpoint inhibitor therapy has achieved clinical success in tumor treatment through blocking the PD-1/PD-L1 checkpoint pathway. However, the presence of M2 tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) will inhibit antitumor immune responses and facilitate tumor growth, which can weaken the effectiveness of immune checkpoint inhibitor therapy. The repolarization of M2 TAMs into M1 TAMs can induce the immune response to secrete proinflammatory factors and active T cells to attack tumor cells. Herein, hollow iron oxide (Fe3O4) nanoparticles (NPs) were prepared for reprogramming M2 TAMs into M1 TAMs. BMS-202, a small-molecule PD-1/PD-L1 inhibitor that has a lower price, higher stability, lower immunogenicity, and higher tumor penetration ability compared with antibodies, was loaded together with pH-sensitive NaHCO3 inside hollow Fe3O4 NPs, followed by wrapping with macrophage membranes. The formed biomimetic FBN@M could produce gaseous carbon dioxide (CO2) from NaHCO3 in response to the acidic TME, breaking up the macrophage membranes to release BMS-202. A series of in vitro and in vivo assessments revealed that FBN@M could reprogram M2 TAMs into M1 TAMs and block the PD-1/PD-L1 pathway, which eventually induced T cell activation and the secretion of TNF-α and IFN-γ to kill the tumor cells. FBN@M has shown a significant immunotherapeutic efficacy for tumor treatment.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Animais , Camundongos , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Nanopartículas Magnéticas de Óxido de Ferro/química , Feminino , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo
9.
Plant Direct ; 8(7): e624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39076347

RESUMO

Cytoplasmic projections (CPs) formed by the generative and sperm cells link the male gametes with the vegetative cell (VC) nucleus, which are required to build the male germ unit (MGU) assemblage in the angiosperm pollen grain. As molecular and genetic controls underlying CP development and formation of the MGU are unknown, it was hypothesized that physical association between germ cells and the VC nucleus might be lost in germ unit malformed (gum) mutants or in those which either block generative cell (GC) division or that additionally prevent gamete differentiation. In vivo, analysis of marked cellular components demonstrated a linkage of sperm cells (SCs) and the VC nucleus in gum mutant alleles despite their increased physical separation. Similarly, for several independent classes of bicellular pollen mutants, undivided GCs were associated with the VC nucleus like GCs in wild-type pollen. We conclude that the early formation of GC CPs to establish the MGU is regulated independently of DUO1-DAZ1 and DUO3 transcription factors as well as cyclin-dependent kinase function (CDKA;1). As the absence of cytoplasmic protrusion was expected in the gum mutants in Arabidopsis, early histological studies reported temporal disappearance of cytoplasmic protrusion in several organisms. Our findings demonstrated the striking importance of live imaging to verify the broad conservation of the persistent MGU contact in all the angiosperms and its important role in successful double fertilization.

11.
Drug Target Insights ; 18: 47-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903608

RESUMO

Background: Pistacia chinensis is extensively employed in traditional medicine. This study aimed to isolate and evaluate the therapeutic effects of 3'4'78-tetrahydroxy-3-methoxyflavone from P. chinensis crude extract. Materials and Methods: The study utilized column chromatography for isolation. The plant extract and its isolated compound were assessed for in vivo analgesic (hot plate model), anti-inflammatory (carrageenan-induced paw edema), sedative (open field model), and muscle relaxing properties (inclined plane and traction test). Results: In the thermal-induced analgesic model, a significant analgesic effect was observed for the extract (25, 50, and 100 mg/kg) and the isolated compound (2.5, 5, 10, and 15 mg/kg) at higher doses. The extract (100 mg/kg) significantly prolonged latency time (21.98 seconds) after 120 minutes of administration. The isolated compound elevated the latency time (20.03 seconds) after 30 minutes, remaining significant up to 120 minutes with a latency time of 24.11 seconds. The anti-inflammatory effect showed a reduction in inflammatory reactions by 50.23% (extract) and 67.09% (compound) after the fifth hour of treatment. Both samples demonstrated significant sedative effects, with the extract hindering movement by 54.11 lines crossed compared to the negative control (180.99 lines). The isolated compound reduced the number of lines crossed to 15.23±SEM compared to the negative control. Both samples were also significant muscle relaxants. Docking studies indicated that the compound's therapeutic effect is due to inhibiting COX and nociceptive pathways. Conclusion: The isolated compound from Pistacia chinensis exhibits significant analgesic, anti-inflammatory, sedative, and muscle relaxing properties, with potential therapeutic applications by inhibiting COX and nociceptive pathways.

12.
Food Sci Nutr ; 12(6): 4459-4472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873463

RESUMO

During the last decade, nanotechnology has attained a significant place among the scientific community for the biosynthesis of plant-based nanoparticles owing to its effective, safe, and eco-friendly nature. Hence, keeping in view the significance of nanotechnology, the current study was conducted to develop, characterize (UV-visible spectroscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy), and assess the antimicrobial (antibacterial and antifungal) properties of Peganum harmala L. Extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs). Characteristic absorption peaks at 420 and 540 nm revealed the formation of AgNPs and AuNPs, respectively. SEM images revealed that both silver and gold nanoparticles were oval and spherical with average size ranging from 42 to 72 and 12.6 to 35.7 nm, respectively. Similarly, FT-IR spectra revealed that the functional groups such as hydroxyl, carboxyl, and polyphenolic groups of biomolecules present in the extract are possibly responsible for reducing metallic ions and the formation of nanoparticles. Likewise, the EDX analysis confirmed the presence of silver and gold in synthesized NPs. Furthermore, the AgNPs and AuNPs showed good antibacterial and antifungal activities. The maximum antibacterial and antifungal activity was noticed for P. harmala extract against Pseudomonas aeroginosa (21 mm) and Candida albicon (18 mm), respectively. Whereas, the maximum antibacterial and antifungal activities of synthesized AgNPs were observed against Salmonella typhi (25 mm) and Penicillium notatum (36 mm), respectively. Moreover, in the case of AuNPs, the highest antibacterial and antifungal activity of synthesized AuNPs was noticed against Escherichia coli (25 mm) and C. albicon (31 mm), respectively. Findings of this study revealed that P. harmala extract and biosynthesized NPs (silver and gold) possessed significant antibacterial and antifungal properties against different bacterial (Bacillus subtilis, Staphylococcus aureus, E. coli, P. aeroginosa, and S. typhi) and fungal (C. albicans, Aspergillus Niger, and P. notatum) strains. Further studies must be carried out to assess the probable mechanism of action associated with these antimicrobial properties.

13.
Med Oncol ; 41(6): 134, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703282

RESUMO

Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.


Assuntos
Neoplasias Hepáticas , Transdução de Sinais , Animais , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Hepatocelular/prevenção & controle , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Suplementos Nutricionais , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
14.
Nat Prod Res ; : 1-5, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712509

RESUMO

Pistacia chinensis is used as a decorative tree and currently studied as a source of biofuels. Besides, its parts and extracts are endowed with several therapeutic uses which have been widely explored in traditional medicine and that are related to its rich composition in phytochemicals. Molecular docking and enzymatic inhibition tests were used to study the activity of eriodictyol, a flavonoid extracted from the barks of P. chinensis, against ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and aldose reductase (ALR2). The compound was highlighted as a micromolar inhibitor in vitro (IC50 = 263.76 ± 1.32 µM and 4.21 ± 0.94 µM, respectively) and docking showed that eriodictyol efficiently targets the binding sites of the enzymes. In conclusion, this study unveils the potential of eriodictyol on enzymes that are involved in immunostimulation and in complications of diabetes mellitus.

15.
Heliyon ; 10(9): e30547, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726163

RESUMO

The present article describes the muscle relaxant and antipyretic effects of pentacyclic triterpenes, oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA) isolated from roots of Diospyros lotus in animal models. The muscle relaxant effects of isolated pentacyclic triterpenes were determined by chimney and inclined plane tests. In the chimney test, pretreatment of pentacyclic triterpenes evoked significant dose dependent influence on muscle coordination. When administered intraperitoneally (i.p.) to mice at 10 mg/kg for 90 min, OA, UA, and BA exhibited muscle relaxant effects of 66.72 %, 60.21 %, and 50.77 %, respectively. Similarly, OA, UA, and BA (at 10 mg/kg) illustrated 65.74 %, 59.84 % and 51.40 % muscle relaxant effects in the inclined plane test. In the antipyretic test, significant amelioration was caused by pretreatment of all compounds in dose dependent manner. OA, UA, and BA (at 5 mg/kg) showed 39.32 %, 34.32 % and 29.99 % anti-hyperthermic effects, respectively 4 h post-treatment, while at 10 mg/kg, OA, UA, and BA exhibited 71.59 %, 60.99 % and 52.44 % impact, respectively. The muscle relaxant effect of benzodiazepines is well known for enhancement of GABA receptors. There may exist a similar mechanism for muscle relaxant effect of pentacyclic triterpenes. The in-silico predicted binding pattern of all the compounds reflects good affinity of compounds with GABAA receptor and COX-2. These results indicate that the muscle relaxant and antipyretic activities of these molecules can be further improved by structural optimization.

16.
Food Sci Nutr ; 12(5): 3483-3491, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726429

RESUMO

Acacia nilotica L., also known as babul, belonging to the Fabaceae family and the Acacia genus, is typically used for ornamental purposes and also as a medicinal plant found in tropical and subtropical areas. This plant is a rich source of bioactive compounds. The current study aimed to elucidate the hypoglycemic, anti-inflammatory, and neuroprotective potential of A. nilotica's crude methanolic extract. The results of the in vitro antidiabetic assay revealed that methanolic extract of A. nilotica inhibited the enzyme α-glucosidase (IC50: 33 µg mL-1) and α-amylase (IC50: 17 µg mL-1) in a dose-dependent manner. While in the anticholinesterase enzyme inhibitory assay, maximum inhibition was shown by the extract against acetylcholinesterase (AChE) (637.01 µg mL-1) and butyrylcholinesterase (BChE) (491.98 µg mL-1), with the highest percent inhibition of 67.54% and 71.50% at 1000 µg mL-1, respectively. This inhibitory potential was lower as compared to the standard drug Galantamine that exhibited 82.43 and 89.50% inhibition at the same concentration, respectively. Moreover, the methanolic extract of A. nilotica also significantly inhibited the activities of cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) in a concentration-dependent manner. The percent inhibitory activity of 5-LOX and COX-2 ranged from 42.47% to 71.53% and 43.48% to 75.22%, respectively. Furthermore, in silico, in vivo, and clinical investigations must be planned to validate the above-stated bioactivities of A. nilotica.

17.
Front Biosci (Landmark Ed) ; 29(5): 183, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38812295

RESUMO

BACKGROUND: The present study aimed to investigate the in-vitro anti-diabetic, anti-cholinesterase, and anti-inflammatory potential of extracts from different parts of Ficus benghalensis, including leaves, stem, and roots, as well as isolated column fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C). METHODS: The extracts and subsequent fractions were evaluated for their inhibitory activity against key enzymes involved in diabetes [α-glucosidase and α-amylase], neurodegenerative diseases [acetylcholinesterase and butyrylcholinesterase], and inflammation (cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX)). RESULTS: The results showed that F. benghalensis leaf extract exhibited the highest α-glucosidase inhibitory activity (73.84%) and α-amylase inhibitory activity (76.29%) at 1000 µg/mL. The stem extract (65.50%) and F-B-2 C fraction (69.67%) also demonstrated significant α-glucosidase inhibitory activity. In terms of anti-cholinesterase activity, the extracts of roots, leaves, and stem showed promising inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with half maximal inhibitory concentration (IC50) values ranging from 50.50 to 474.83 µg/mL. The derived fractions (F-B-1 C, F-B-2 C, F-B-3 C, and F-B-4 C) also exhibited notable inhibition of AChE and BChE, with IC50 values from 91.85 to 337.94 µg/mL. Moreover, the F-B-3 C fraction demonstrated the highest COX-2 inhibitory potential (85.72%), followed by F-B-1 C (83.13%), the stem extract (80.85%), and the leaves extract (79.00%). The F-B-1 C fraction showed the highest 5-LOX inhibitory activity (87.63%), while the root extract exhibited the lowest inhibition (73.39%). CONCLUSIONS: The results demonstrated promising bioactivity, suggesting the potential of F. benghalensis as a source of natural compounds with therapeutic applications. Further studies are required to identify and isolate the active components responsible for these effects and to evaluate their in-vivo efficacy and safety.


Assuntos
Anti-Inflamatórios , Inibidores da Colinesterase , Ficus , Hipoglicemiantes , Extratos Vegetais , Ficus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Folhas de Planta/química , Butirilcolinesterase/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/isolamento & purificação , Acetilcolinesterase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Raízes de Plantas/química
18.
Fitoterapia ; 176: 106024, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763410

RESUMO

The uncontrolled hyperglycemia that characterizes diabetes mellitus (DM) causes several complications in the organism. DM is among the major causes of deaths, and the limited efficacy of current treatments push the search for novel drug candidates, also among natural compounds. We focused our attention on caffeoylmalic acid, a phenolic derivative extracted from Urtica dioica, a plant investigated for its potential against type 2 DM. This compound was tested for its antidiabetic activity in vitro through a glucose uptake assay, in vivo in a mouse DM model and through molecular docking towards α-amylase and α-glucosidase. The effects on glucose blood level, liver enzymes, insulin and creatinine levels as well as on lipid and blood parameters, considered biochemical markers of diabetes, were also evaluated. The results showed an antidiabetic activity in vitro and in vivo, as the compound stimulates glucose absorbtion and reduces blood glucose levels. Moreover, it ameliorates lipid profile, liver and blood parameters, with moderate effect on insulin secretion. Taken together, these findings pave the way for the compounds from this class of caffeoylmalic acid as potential antidiabetic compounds.


Assuntos
Glicemia , Hipoglicemiantes , Simulação de Acoplamento Molecular , Urtica dioica , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação , Camundongos , Urtica dioica/química , Masculino , Glicemia/efeitos dos fármacos , Estrutura Molecular , Diabetes Mellitus Experimental/tratamento farmacológico , Malatos/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Insulina/sangue , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/isolamento & purificação
19.
Sci Rep ; 14(1): 9624, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671030

RESUMO

Fernandoa adenophylla, due to the presence of phytochemicals, has various beneficial properties and is used in folk medicine to treat many conditions. This study aimed to isolate indanone derivative from F. adenophylla root heartwood and assess in-vitro anti-inflammatory and anti-diabetic characteristics at varying concentrations. Heat-induced hemolysis and glucose uptake by yeast cells assays were conducted to evaluate these properties. Besides, docking analyses were performed on four molecular targets. These studies were combined with molecular dynamics simulations to elucidate the time-evolving inhibitory effect of selected inhibitors within the active pockets of the target proteins (COX-1 and COX-2). Indanone derivative (10-100 µM) inhibited the lysis of human red blood cells from 9.12 ± 0.75 to 72.82 ± 4.36% and, at 5-100 µM concentrations, it significantly increased the yeast cells' glucose uptake (5.16 ± 1.28% to 76.59 ± 1.62%). Concluding, the isolated indanone might act as an anti-diabetic agent by interacting with critical amino acid residues of 5' adenosine monophosphate-activated protein kinase (AMPK), and it showed a binding affinity with anti-inflammatory targets COX-1, COX-2, and TNF-α. Besides, the obtained results may help to consider the indanone derivative isolated from F. adenophylla as a promising candidate for drug delivery, subject to outcomes of further in vivo and clinical studies.


Assuntos
Anti-Inflamatórios , Ciclo-Oxigenase 2 , Hipoglicemiantes , Simulação de Acoplamento Molecular , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/metabolismo , Indanos/farmacologia , Indanos/química , Ciclo-Oxigenase 1/metabolismo , Simulação de Dinâmica Molecular , Glucose/metabolismo , Hemólise/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Simulação por Computador
20.
Brain Res ; 1834: 148886, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582413

RESUMO

Alzheimer's disease (AD) has few effective treatment options and continues to be a major global health concern. AD is a neurodegenerative disease that typically affects elderly people. Alkaloids have potential sources for novel drug discovery due to their diverse chemical structures and pharmacological activities. Alkaloids, natural products with heterocyclic nitrogen-containing structures, are considered potential treatments for AD. This review explores the neuroprotective properties of alkaloids in AD, focusing on their ability to regulate pathways such as amyloid-beta aggregation, oxidative stress, synaptic dysfunction, tau hyperphosphorylation, and neuroinflammation. The FDA has approved alkaloids such as acetylcholinesterase inhibitors like galantamine and rivastigmine. This article explores AD's origins, current market medications, and clinical applications of alkaloids in AD therapy. This review explores the development of alkaloid-based drugs for AD, focusing on pharmacokinetics, blood-brain barrier penetration, and potential adverse effects. Future research should focus on the clinical evaluation of promising alkaloids, developing recently discovered alkaloids, and the ongoing search for novel alkaloids for medical treatment. A pharmaceutical option containing an alkaloid may potentially slow down the progression of AD while enhancing its symptoms. This review highlights the potential of alkaloids as valuable drug leads in treating AD, providing a comprehensive understanding of their mechanisms of action and therapeutic implications.


Assuntos
Alcaloides , Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...