Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1538(1): 107-116, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091036

RESUMO

Formants, or resonance frequencies of the upper vocal tract, are an essential part of acoustic communication. Articulatory gestures-such as jaw, tongue, lip, and soft palate movements-shape formant structure in human vocalizations, but little is known about how nonhuman mammals use those gestures to modify formant frequencies. Here, we report a case study with an adult male harbor seal trained to produce an arbitrary vocalization composed of multiple repetitions of the sound wa. We analyzed jaw movements frame-by-frame and matched them to the tracked formant modulation in the corresponding vocalizations. We found that the jaw opening angle was strongly correlated with the first (F1) and, to a lesser degree, with the second formant (F2). F2 variation was better explained by the jaw angle opening when the seal was lying on his back rather than on the belly, which might derive from soft tissue displacement due to gravity. These results show that harbor seals share some common articulatory traits with humans, where the F1 depends more on the jaw position than F2. We propose further in vivo investigations of seals to further test the role of the tongue on formant modulation in mammalian sound production.


Assuntos
Vocalização Animal , Animais , Vocalização Animal/fisiologia , Masculino , Língua/fisiologia , Arcada Osseodentária/fisiologia , Arcada Osseodentária/anatomia & histologia , Phocoena/fisiologia , Humanos
2.
Curr Zool ; 70(3): 291-297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39035758

RESUMO

The search for common characteristics between the musical abilities of humans and other animal species is still taking its first steps. One of the most promising aspects from a comparative point of view is the analysis of rhythmic components, which are crucial features of human communicative performance but also well-identifiable patterns in the vocal displays of other species. Therefore, the study of rhythm is becoming essential to understand the mechanisms of singing behavior and the evolution of human communication. Recent findings provided evidence that particular rhythmic structures occur in human music and some singing animal species, such as birds and rock hyraxes, but only 2 species of nonhuman primates have been investigated so far (Indri indri and Hylobates lar). Therefore, our study aims to consistently broaden the list of species studied regarding the presence of rhythmic categories. We investigated the temporal organization in the singing of 3 species of crested gibbons (Nomascus gabriellae, Nomascus leucogenys, and Nomascus siki) and found that the most prominent rhythmic category was isochrony. Moreover, we found slight variation in songs' tempo among species, with N. gabriellae and N. siki singing with a temporal pattern involving a gradually increasing tempo (a musical accelerando), and N. leucogenys with a more regular pattern. Here, we show how the prominence of a peak at the isochrony establishes itself as a shared characteristic in the small apes considered so far.

3.
PLoS Comput Biol ; 20(6): e1012222, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913743

RESUMO

Biological structures are defined by rigid elements, such as bones, and elastic elements, like muscles and membranes. Computer vision advances have enabled automatic tracking of moving animal skeletal poses. Such developments provide insights into complex time-varying dynamics of biological motion. Conversely, the elastic soft-tissues of organisms, like the nose of elephant seals, or the buccal sac of frogs, are poorly studied and no computer vision methods have been proposed. This leaves major gaps in different areas of biology. In primatology, most critically, the function of air sacs is widely debated; many open questions on the role of air sacs in the evolution of animal communication, including human speech, remain unanswered. To support the dynamic study of soft-tissue structures, we present a toolkit for the automated tracking of semi-circular elastic structures in biological video data. The toolkit contains unsupervised computer vision tools (using Hough transform) and supervised deep learning (by adapting DeepLabCut) methodology to track inflation of laryngeal air sacs or other biological spherical objects (e.g., gular cavities). Confirming the value of elastic kinematic analysis, we show that air sac inflation correlates with acoustic markers that likely inform about body size. Finally, we present a pre-processed audiovisual-kinematic dataset of 7+ hours of closeup audiovisual recordings of siamang (Symphalangus syndactylus) singing. This toolkit (https://github.com/WimPouw/AirSacTracker) aims to revitalize the study of non-skeletal morphological structures across multiple species.


Assuntos
Sacos Aéreos , Elasticidade , Animais , Sacos Aéreos/fisiologia , Sacos Aéreos/anatomia & histologia , Fenômenos Biomecânicos , Biologia Computacional/métodos , Aprendizado Profundo , Gravação em Vídeo/métodos
4.
Ann N Y Acad Sci ; 1537(1): 41-50, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925552

RESUMO

Animal songs differ from calls in function and structure, and have comparative and translational value, showing similarities to human music. Rhythm in music is often distributed in quantized classes of intervals known as rhythmic categories. These classes have been found in the songs of a few nonhuman species but never in their calls. Are rhythmic categories song-specific, as in human music, or can they transcend the song-call boundary? We analyze the vocal displays of one of the few mammals producing both songs and call sequences: Indri indri. We test whether rhythmic categories (a) are conserved across songs produced in different contexts, (b) exist in call sequences, and (c) differ between songs and call sequences. We show that rhythmic categories occur across vocal displays. Vocalization type and function modulate deployment of categories. We find isochrony (1:1 ratio, like the rhythm of a ticking clock) in all song types, but only advertisement songs show three rhythmic categories (1:1, 1:2, 2:1 ratios). Like songs, some call types are also isochronous. Isochrony is the backbone of most indri vocalizations, unlike human speech, where it is rare. In indri, isochrony underlies both songs and hierarchy-less call sequences and might be ancestral to both.


Assuntos
Vocalização Animal , Animais , Vocalização Animal/fisiologia , Humanos , Primatas/fisiologia , Música/psicologia , Evolução Biológica
5.
Proc Natl Acad Sci U S A ; 121(25): e2313093121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814875

RESUMO

While rhythm can facilitate and enhance many aspects of behavior, its evolutionary trajectory in vocal communication systems remains enigmatic. We can trace evolutionary processes by investigating rhythmic abilities in different species, but research to date has largely focused on songbirds and primates. We present evidence that cetaceans-whales, dolphins, and porpoises-are a missing piece of the puzzle for understanding why rhythm evolved in vocal communication systems. Cetaceans not only produce rhythmic vocalizations but also exhibit behaviors known or thought to play a role in the evolution of different features of rhythm. These behaviors include vocal learning abilities, advanced breathing control, sexually selected vocal displays, prolonged mother-infant bonds, and behavioral synchronization. The untapped comparative potential of cetaceans is further enhanced by high interspecific diversity, which generates natural ranges of vocal and social complexity for investigating various evolutionary hypotheses. We show that rhythm (particularly isochronous rhythm, when sounds are equally spaced in time) is prevalent in cetacean vocalizations but is used in different contexts by baleen and toothed whales. We also highlight key questions and research areas that will enhance understanding of vocal rhythms across taxa. By coupling an infraorder-level taxonomic assessment of vocal rhythm production with comparisons to other species, we illustrate how broadly comparative research can contribute to a more nuanced understanding of the prevalence, evolution, and possible functions of rhythm in animal communication.


Assuntos
Cetáceos , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Cetáceos/fisiologia , Evolução Biológica , Periodicidade
6.
Ecol Evol ; 14(3): e11085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463637

RESUMO

Animal vocal communication often relies on call sequences. The temporal patterns of such sequences can be adjusted to other callers, follow complex rhythmic structures or exhibit a metronome-like pattern (i.e., isochronous). How regular are the temporal patterns in animal signals, and what influences their precision? If present, are rhythms already there early in ontogeny? Here, we describe an exploratory study of Cape fur seal (Arctocephalus pusillus pusillus) barks-a vocalisation type produced across many pinniped species in rhythmic, percussive bouts. This study is the first quantitative description of barking in Cape fur seal pups. We analysed the rhythmic structures of spontaneous barking bouts of pups and adult females from the breeding colony in Cape Cross, Namibia. Barks of adult females exhibited isochrony, that is they were produced at fairly regular points in time. Instead, intervals between pup barks were more variable, that is skipping a bark in the isochronous series occasionally. In both age classes, beat precision, that is how well the barks followed a perfect template, was worse when barking at higher rates. Differences could be explained by physiological factors, such as respiration or arousal. Whether, and how, isochrony develops in this species remains an open question. This study provides evidence towards a rhythmic production of barks in Cape fur seal pups and lays the groundwork for future studies to investigate the development of rhythm using multidimensional metrics.

7.
Behav Res Methods ; 56(4): 3725-3736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308146

RESUMO

thebeat is a Python package for working with temporal sequences and rhythms in the behavioral and cognitive sciences, as well as in bioacoustics. It provides functionality for creating experimental stimuli, and for visualizing and analyzing temporal data. Sequences, sounds, and experimental trials can be generated using single lines of code. thebeat contains functions for calculating common rhythmic measures, such as interval ratios, and for producing plots, such as circular histograms. thebeat saves researchers time when creating experiments, and provides the first steps in collecting widely accepted methods for use in timing research. thebeat is an open-source, on-going, and collaborative project, and can be extended for use in specialized subfields. thebeat integrates easily with the existing Python ecosystem, allowing one to combine our tested code with custom-made scripts. The package was specifically designed to be useful for both skilled and novice programmers. thebeat provides a foundation for working with temporal sequences onto which additional functionality can be built. This combination of specificity and plasticity should facilitate research in multiple research contexts and fields of study.


Assuntos
Software , Humanos , Linguagens de Programação , Periodicidade
8.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252123

RESUMO

Recursive procedures that allow placing a vocal signal inside another of a similar kind provide a neuro-computational blueprint for syntax and phonology in spoken language and human song. There are, however, no known vocal sequences among nonhuman primates arranged in self-embedded patterns that evince vocal recursion or potential incipient or evolutionary transitional forms thereof, suggesting a neuro-cognitive transformation exclusive to humans. Here, we uncover that wild flanged male orangutan long calls feature rhythmically isochronous call sequences nested within isochronous call sequences, consistent with two hierarchical strata. Remarkably, three temporally and acoustically distinct call rhythms in the lower stratum were not related to the overarching rhythm at the higher stratum by any low multiples, which suggests that these recursive structures were neither the result of parallel non-hierarchical procedures nor anatomical artifacts of bodily constraints or resonances. Findings represent a case of temporally recursive hominid vocal combinatorics in the absence of syntax, semantics, phonology, or music. Second-order combinatorics, 'sequences within sequences', involving hierarchically organized and cyclically structured vocal sounds in ancient hominids may have preluded the evolution of recursion in modern language-able humans.


Language is the most powerful communication tool known in nature. By combining a finite set of elements, it allows us to encode infinite messages. This enables communication about virtually anything, from alerting others to potential dangers, to recommending a favourite book. The prevailing theory of the last 70 years suggests that this ability rests on a computational process in the brain that is unique to humans, known as recursion. Recursion enables humans to produce and place a language element or pattern of elements inside another element or pattern of the same kind. In this way, a clause can be embedded inside another 'carrier' clause to extend a thought, argument, or scenario, for example, "the dog, which chased the cat, was barking". While recursion offers a simple, yet potent, explanation for the endless possibilities of language, how and why recursion ­ and by extension language ­ emerged in humans but no other animals remains a mystery. Lameira et al. observed vocal patterns in wild orangutans that appeared to be composed of different elements. As orangutans and other great apes are our closest living relatives, they represent the most realistic model for studying the ability of human ancestors to use and comprehend language. Therefore, Lameira et al. set out to determine if this was a case of vocal patterning embedded within a similar vocal pattern, which could indicate that recursion underpins production of these calls. Analysing recordings of long calls made by wild male orangutans showed that they are organized as two layers, where calls with a regular beat (or tempo) are produced within another "carrier" call of a different tempo. Up to three different call types, each with their own signature tempo, can occur within the same carrier call. Further analysis confirmed these call types were unrelated to the carrier. The findings of Lameira et al. demonstrate that orangutans produce recursive vocal sequences that could represent a possible precursor to recursion in humans, offering a potential avenue for studying how recursion, and ultimately language, evolved in humans. In the future, better understanding of how language evolved may help to refine machine learning algorithms that aim to recognize, predict or generate text.


Assuntos
Música , Pongo , Humanos , Animais , Masculino , Cognição , Dinitrato de Isossorbida , Linguística
9.
Curr Biol ; 34(2): 444-450.e5, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38176416

RESUMO

The appreciation of music is a universal trait of humankind.1,2,3 Evidence supporting this notion includes the ubiquity of music across cultures4,5,6,7 and the natural predisposition toward music that humans display early in development.8,9,10 Are we musical animals because of species-specific predispositions? This question cannot be answered by relying on cross-cultural or developmental studies alone, as these cannot rule out enculturation.11 Instead, it calls for cross-species experiments testing whether homologous neural mechanisms underlying music perception are present in non-human primates. We present music to two rhesus monkeys, reared without musical exposure, while recording electroencephalography (EEG) and pupillometry. Monkeys exhibit higher engagement and neural encoding of expectations based on the previously seeded musical context when passively listening to real music as opposed to shuffled controls. We then compare human and monkey neural responses to the same stimuli and find a species-dependent contribution of two fundamental musical features-pitch and timing12-in generating expectations: while timing- and pitch-based expectations13 are similarly weighted in humans, monkeys rely on timing rather than pitch. Together, these results shed light on the phylogeny of music perception. They highlight monkeys' capacity for processing temporal structures beyond plain acoustic processing, and they identify a species-dependent contribution of time- and pitch-related features to the neural encoding of musical expectations.


Assuntos
Música , Animais , Percepção da Altura Sonora/fisiologia , Motivação , Eletroencefalografia/métodos , Primatas , Estimulação Acústica , Percepção Auditiva/fisiologia
10.
Biol Lett ; 20(1): 20230407, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229554

RESUMO

Tail wagging is a conspicuous behaviour in domestic dogs (Canis familiaris). Despite how much meaning humans attribute to this display, its quantitative description and evolutionary history are rarely studied. We summarize what is known about the mechanism, ontogeny, function and evolution of this behaviour. We suggest two hypotheses to explain its increased occurrence and frequency in dogs compared to other canids. During the domestication process, enhanced rhythmic tail wagging behaviour could have (i) arisen as a by-product of selection for other traits, such as docility and tameness, or (ii) been directly selected by humans, due to our proclivity for rhythmic stimuli. We invite testing of these hypotheses through neurobiological and ethological experiments, which will shed light on one of the most readily observed yet understudied animal behaviours. Targeted tail wagging research can be a window into both canine ethology and the evolutionary history of characteristic human traits, such as our ability to perceive and produce rhythmic behaviours.


Assuntos
Canidae , Cauda , Animais , Cães , Comportamento Animal , Domesticação , Comportamento Social
11.
BMC Res Notes ; 16(1): 135, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403146

RESUMO

OBJECTIVE: Researchers in animal cognition, psychophysics, and experimental psychology need to randomise the presentation order of trials in experimental sessions. In many paradigms, for each trial, one of two responses can be correct, and the trials need to be ordered such that the participant's responses are a fair assessment of their performance. Specifically, in some cases, especially for low numbers of trials, randomised trial orders need to be excluded if they contain simple patterns which a participant could accidentally match and so succeed at the task without learning. RESULTS: We present and distribute a simple Python software package and tool to produce pseudorandom sequences following the Gellermann series. This series has been proposed to pre-empt simple heuristics and avoid inflated performance rates via false positive responses. Our tool allows users to choose the sequence length and outputs a .csv file with newly and randomly generated sequences. This allows behavioural researchers to produce, in a few seconds, a pseudorandom sequence for their specific experiment. PyGellermann is available at https://github.com/YannickJadoul/PyGellermann .


Assuntos
Cognição , Software , Humanos , Animais
12.
Proc Biol Sci ; 290(2003): 20230876, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37464759

RESUMO

To communicate, an animal's strategic timing of rhythmic signals is crucial. Evolutionary, game-theoretical, and dynamical systems models can shed light on the interaction between individuals and the associated costs and benefits of signalling at a specific time. Mathematical models that study rhythmic interactions from a strategic or evolutionary perspective are rare in animal communication research. But new inspiration may come from a recent game theory model of how group synchrony emerges from local interactions of oscillatory neurons. In the study, the authors analyse when the benefit of joint synchronization outweighs the cost of individual neurons sending electrical signals to each other. They postulate there is a benefit for pairs of neurons to fire together and a cost for a neuron to communicate. The resulting model delivers a variant of a classical dynamical system, the Kuramoto model. Here, we present an accessible overview of the Kuramoto model and evolutionary game theory, and of the 'oscillatory neurons' model. We interpret the model's results and discuss the advantages and limitations of using this particular model in the context of animal rhythmic communication. Finally, we sketch potential future directions and discuss the need to further combine evolutionary dynamics, game theory and rhythmic processes in animal communication studies.


Assuntos
Comunicação Animal , Modelos Teóricos , Animais , Evolução Biológica , Transdução de Sinais , Teoria dos Jogos
13.
Phys Life Rev ; 46: 131-151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419011

RESUMO

Sociality and timing are tightly interrelated in human interaction as seen in turn-taking or synchronised dance movements. Sociality and timing also show in communicative acts of other species that might be pleasurable, but also necessary for survival. Sociality and timing often co-occur, but their shared phylogenetic trajectory is unknown: How, when, and why did they become so tightly linked? Answering these questions is complicated by several constraints; these include the use of divergent operational definitions across fields and species, the focus on diverse mechanistic explanations (e.g., physiological, neural, or cognitive), and the frequent adoption of anthropocentric theories and methodologies in comparative research. These limitations hinder the development of an integrative framework on the evolutionary trajectory of social timing and make comparative studies not as fruitful as they could be. Here, we outline a theoretical and empirical framework to test contrasting hypotheses on the evolution of social timing with species-appropriate paradigms and consistent definitions. To facilitate future research, we introduce an initial set of representative species and empirical hypotheses. The proposed framework aims at building and contrasting evolutionary trees of social timing toward and beyond the crucial branch represented by our own lineage. Given the integration of cross-species and quantitative approaches, this research line might lead to an integrated empirical-theoretical paradigm and, as a long-term goal, explain why humans are such socially coordinated animals.


Assuntos
Evolução Biológica , Hominidae , Animais , Humanos , Filogenia , Comportamento Social
14.
Science ; 379(6635): 881-882, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862789

RESUMO

Toothed whales evolved a third way of making sounds similar to that of land mammals and birds.


Assuntos
Cetáceos , Som , Vocalização Animal , Animais , Cetáceos/fisiologia , Oceanos e Mares
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1875): 20210477, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36871583

RESUMO

Rhythmic patterns in interactive contexts characterize human behaviours such as conversational turn-taking. These timed patterns are also present in other animals, and often described as rhythm. Understanding fine-grained temporal adjustments in interaction requires complementary quantitative methodologies. Here, we showcase how vocal interactive rhythmicity in a non-human animal can be quantified using a multi-method approach. We record vocal interactions in harbour seal pups (Phoca vitulina) under controlled conditions. We analyse these data by combining analytical approaches, namely categorical rhythm analysis, circular statistics and time series analyses. We test whether pups' vocal rhythmicity varies across behavioural contexts depending on the absence or presence of a calling partner. Four research questions illustrate which analytical approaches are complementary versus orthogonal. For our data, circular statistics and categorical rhythms suggest that a calling partner affects a pup's call timing. Granger causality suggests that pups predictively adjust their call timing when interacting with a real partner. Lastly, the ADaptation and Anticipation Model estimates statistical parameters for a potential mechanism of temporal adaptation and anticipation. Our analytical complementary approach constitutes a proof of concept; it shows feasibility in applying typically unrelated techniques to seals to quantify vocal rhythmic interactivity across behavioural contexts. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.


Assuntos
Caniformia , Phoca , Animais , Comunicação , Aclimatação , Projetos de Pesquisa
16.
Ecol Evol ; 13(2): e9791, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36818533

RESUMO

The ability to control one's vocal production is a major advantage in acoustic communication. Yet, not all species have the same level of control over their vocal output. Several bird species can interrupt their song upon hearing an external stimulus, but there is no evidence how flexible this behavior is. Most research on corvids focuses on their cognitive abilities, but few studies explore their vocal aptitudes. Recent research shows that crows can be experimentally trained to vocalize in response to a brief visual stimulus. Our study investigated vocal control abilities with a more ecologically embedded approach in rooks. We show that two rooks could spontaneously coordinate their vocalizations to a long-lasting stimulus (the sound of their small bathing pool being filled with a water hose), one of them adjusting roughly (in the second range) its vocalizations as the stimuli began and stopped. This exploratory study adds to the literature showing that corvids, a group of species capable of cognitive prowess, are indeed able to display good vocal control abilities.

17.
Proc Biol Sci ; 290(1990): 20222244, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629119

RESUMO

How did rhythm originate in humans, and other species? One cross-cultural universal, frequently found in human music, is isochrony: when note onsets repeat regularly like the ticking of a clock. Another universal consists in synchrony (e.g. when individuals coordinate their notes so that they are sung at the same time). An approach to biomusicology focuses on similarities and differences across species, trying to build phylogenies of musical traits. Here we test for the presence of, and a link between, isochrony and synchrony in a non-human animal. We focus on the songs of one of the few singing primates, the lar gibbon (Hylobates lar), extracting temporal features from their solo songs and duets. We show that another ape exhibits one rhythmic feature at the core of human musicality: isochrony. We show that an enhanced call rate overall boosts isochrony, suggesting that respiratory physiological constraints play a role in determining the song's rhythmic structure. However, call rate alone cannot explain the flexible isochrony we witness. Isochrony is plastic and modulated depending on the context of emission: gibbons are more isochronous when duetting than singing solo. We present evidence for rhythmic interaction: we find statistical causality between one individual's note onsets and the co-singer's onsets, and a higher than chance degree of synchrony in the duets. Finally, we find a sex-specific trade-off between individual isochrony and synchrony. Gibbon's plasticity for isochrony and rhythmic overlap may suggest a potential shared selective pressure for interactive vocal displays in singing primates. This pressure may have convergently shaped human and gibbon musicality while acting on a common neural primate substrate. Beyond humans, singing primates are promising models to understand how music and, specifically, a sense of rhythm originated in the primate phylogeny.


Assuntos
Hominidae , Música , Masculino , Animais , Feminino , Humanos , Hylobates/fisiologia , Vocalização Animal/fisiologia , Primatas
18.
Curr Biol ; 33(2): R50-R52, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36693305

RESUMO

Diandra Duengen and colleagues introduce Hoover, a male harbor seal famous for his imitation of human speech.


Assuntos
Caniformia , Phoca , Animais , Masculino , Humanos
19.
Cereb Cortex ; 33(11): 6902-6916, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36702496

RESUMO

The intergenerational stability of auditory symbolic systems, such as music, is thought to rely on brain processes that allow the faithful transmission of complex sounds. Little is known about the functional and structural aspects of the human brain which support this ability, with a few studies pointing to the bilateral organization of auditory networks as a putative neural substrate. Here, we further tested this hypothesis by examining the role of left-right neuroanatomical asymmetries between auditory cortices. We collected neuroanatomical images from a large sample of participants (nonmusicians) and analyzed them with Freesurfer's surface-based morphometry method. Weeks after scanning, the same individuals participated in a laboratory experiment that simulated music transmission: the signaling games. We found that high accuracy in the intergenerational transmission of an artificial tone system was associated with reduced rightward asymmetry of cortical thickness in Heschl's sulcus. Our study suggests that the high-fidelity copying of melodic material may rely on the extent to which computational neuronal resources are distributed across hemispheres. Our data further support the role of interhemispheric brain organization in the cultural transmission and evolution of auditory symbolic systems.


Assuntos
Córtex Auditivo , Música , Humanos , Imageamento por Ressonância Magnética , Encéfalo , Córtex Auditivo/fisiologia , Mapeamento Encefálico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...