Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; : 124484, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960120

RESUMO

Sundarban, a Ramsar site of India, has been encountering an ecological threat due to the presence of microplastic (MP) wastes generated from different anthropogenic sources. Clibanarius longitarsus, an intertidal hermit crab of Sundarban Biosphere Reserve, resides within the abandoned shell of a gastropod mollusc, Telescopium telescopium. We characterized and estimated the MP in the gills and gut of hermit crab, as well as in the water present in its occupied gastropod shell. The average microplastic abundance in sea water, sand and sediment were 0.175 ± 0.145 MP L-1, 42 ± 15.03 MP kg-1 and 67.63 ± 24.13 MP kg-1 respectively. The average microplastic load in hermit crab was 1.94 ± 0.59 MP crab-1, with 33.89 % and 66.11 % in gills and gut respectively. Gastropod shell water exhibited accumulation of 1.69 ± 1.43 MP L-1. Transparent and fibrous microplastics were documented as the dominant polymers of water, sand and sediment. Shell water exhibited the prevalence of green microplastics followed by transparent ones. Microscopic examination revealed microplastics with 100-300 µm size categories were dominant across all abiotic compartments. ATR-FTIR and Raman spectroscopy confirmed polyethylene and polypropylene as the prevalent polymers among the five identified polymers of biotic and abiotic components. The target group index indicated green and black as the preferable microplastics of crab. The ecological risk analysis indicated a considerable level of environmental pollution risk in Sundarban and its inhabiting organisms. This important information base may facilitate in developing a strategy of mitigation to limit the MP induced ecological risk at Sundarban Biosphere Reserve.

2.
J Hazard Mater ; 476: 135087, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964042

RESUMO

Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.

3.
Mar Pollut Bull ; 198: 115857, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039580

RESUMO

Sundarbans, a Ramsar site of India is contaminated with heterogeneous microplastic wastes. Boddart's goggle eye mudskipper and Rubicundus eelgoby, were common gobies of Sundarbans estuary which accumulated microplastics during their normal biological activities. We estimated the abundance of microplastics in water, sediment; skin, gills, bucco-opercular cavity and gastrointestinal tract of these two goby fishes. Microplastic load estimated in gobies were 0.84 and 2.62 particles per fish species with a dominance of transparent, fibrous microplastics with 100-300 µm in length. ATR-FTIR and Raman spectroscopy revealed polyethylene as prevalent polymer. Surface degradations and adsorption of contaminants on microplastic surface were investigated by SEM-EDX analysis. Presence of hazardous polymers influenced high polymer hazard index and potential ecological risk index which indicated acute environmental threat to Sundarbans estuary and its resident organisms. Current study will provide a new information base on the abundance of microplastics and its ecological hazard in this biosphere reserve.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Ecossistema , Peixes , Polímeros
4.
J Morphol ; 283(7): 956-972, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621718

RESUMO

Earthworms inhabit different strata of moist soil. Epigeic and endogeic earthworms prefer superficial and inner stratum of soil respectively, whereas, semiaquatic species are distributed around hydrated soil near ponds and lakes. Coelomocytes, the chief immunoeffector cells of coelomic origin, perform diverse physiological functions like phagocytosis, maintenance of cellular homeostasis, and acid-base balance of coelomic fluid, graft rejection, elicitation of cytotoxic, and oxidative responses under the challenges of pathogens and toxins. The present study aims to analyze selected morphological and functional parameters in three differentially adapted Indian earthworms of nonsimilar habitats. Coelomocytes of Glyphidrilus tuberosus (Stephenson, 1916) (semiaquatic), Perionyx excavatus (Perrier, 1872) (epigeic), and Eutyphoeus orientalis (Beddard, 1883) (endogeic) were isolated for morphological and morphometric analyses and subjected to determination of phagocytic, oxidative, and cytotoxic responses. Activities of phenoloxidase, pro, and antioxidant enzymes, and autofluorescence were determined in the extruded coelomocytes of earthworms of three contrasting habitats. The differential result may be correlated with species-specific responses and variation in habitat preference and related adaptation.


Assuntos
Oligoquetos , Animais , Ecótipo , Estresse Oxidativo , Fagocitose , Solo
5.
Artigo em Inglês | MEDLINE | ID: mdl-35182717

RESUMO

The current study is aimed to assess the ecotoxicological effects of toxic metals and seasonal shift of the physicochemical characteristics of soil in an endogeic earthworm Metaphire posthuma of industrially contaminated soil of Calcutta leather complex. The accumulation of cadmium, chromium, lead and mercury was quantitated in whole earthworms and coelomocytes. The accumulation of metals was derived to be high in the coelomocytes than whole earthworms. Morphofunctional shift in coelomocytes indicated a high level of metal toxicity in soil inhabitants. The shift in differential coelomocyte count and cellular damage including intense cytoplasmic vacuolation and membrane blebbing of coelomocytes of M. posthuma of contaminated soil were suggestive to a state of immunocompromisation in the same species. Shift in the generation of nitric oxide and activity of inducible nitric oxide synthase indicated a possible immunosuppression in earthworm. Depletion in the acetylcholinesterase activity of coelomocytes indicated neurotoxicity of metals leached from the dumped wastes in Calcutta leather complex. Integrated biomarker response based analysis was carried out to assess the biomarker potential of experimental endpoints of M. posthuma to monitor metal toxicity in soil.


Assuntos
Metais , Oligoquetos , Poluentes do Solo , Acetilcolinesterase , Animais , Biomarcadores , Índia , Metais/análise , Metais/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
6.
Fish Shellfish Immunol ; 114: 229-237, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979692

RESUMO

The freshwater aquifers of the Indo-Gangetic plains support rich biodiversity which is under the threat of arsenic contamination. The filter feeding bivalve mollusc Lamellidens marginalis is a sessile and sentinel resident of these freshwater habitats. In the present study, the classical cell behaviours of adhesion and aggregation were monitored in the circulating haemocytes of the freshwater bivalve under the exposure of sodium arsenite (NaAsO2) at sublethal concentrations in controlled laboratory conditions for a maximum time-span of sixteen days. The toxic metalloid significantly inhibited non-self adhesion, inter-haemocyte interactions and haemocyte aggregation in a dose and time dependent manner. The natural occurrence of the filopods on the haemocytes was significantly diminished in the bivalves exposed to the inorganic arsenite. Moreover, a significant fall in the kinetics of phagocytosis index and haemocyte adhesion was observed under the in vitro exposure to NaAsO2. Compromised non-self adhesion, cell-cell aggregation and phagocytosis of non-self particles by the bivalve haemocytes probably indicate susceptible immunological status of the bivalve. Such vulnerable immunity of the bivalve probably signifies the nature of imminent threat to the freshwater ecosystem as a whole under inorganic arsenite exposure. The findings would be helpful to design bivalve haemocyte based inexpensive biomonitoring tool to assess the health of freshwater ecosystem under potential arsenic threat.


Assuntos
Arsênio/toxicidade , Bivalves/citologia , Adesão Celular/fisiologia , Agregação Celular/fisiologia , Hemócitos/fisiologia , Fagocitose/fisiologia , Animais , Arseniatos/toxicidade , Poluentes Químicos da Água/toxicidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-32781292

RESUMO

Waterbodies of India support a wide range of molluscs including Lamellidens marginalis, a pearl forming edible mussel of ecological significance. Report of copper oxide nanoparticle toxicity in Indian molluscs is limited in scientific literature. L. marginalis is a gill respiring filter feeder, which is toxicologically vulnerable to exposure of copper oxide nanoparticles liberated from electrical, textile and polymer industries. Experimental exposure of copper oxide nanoparticles for 7 days yielded a decrease in gill filtration rate, respiration rate, total count and phagocytic response of hemocytes, the chief immunoeffector cells of L. marginalis. Nanoparticle exposure resulted in decrease of phagocytic response of mussel hemocytes. Decrease in nitric oxide generation and phenoloxidase activity were recorded in L. marginalis exposed to 0.5, 1 and 5 mg copper oxide nanoparticles per litre of water for 7 and 14 days. Superoxide anion generation in hemocytes was increased under the exposure of copper oxide nanoparticles. Increase in superoxide anion and decrease in the activities of superoxide dismutase and catalase were indicative to oxidative stress in mussels. Copper oxide nanoparticle induced shift in filtration and respiration rate along with the hemocyte associated immune parameters were suggestive to an acute immunophysiological stress in L. marginalis. We estimated the functional performance of gill and physiological status of aquatic respiration in L. marginalis exposed to copper oxide nanoparticles. A parallel set of estimation of each parameter was carried out in L. marginalis exposed to identical copper sulphate concentrations to record and compare the ionic toxicity of copper in the same specimen.


Assuntos
Bivalves/fisiologia , Cobre/toxicidade , Brânquias/fisiologia , Hemócitos/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Bivalves/efeitos dos fármacos , Catalase/metabolismo , Água Doce , Brânquias/efeitos dos fármacos , Índia , Óxido Nítrico/metabolismo , Fagocitose , Taxa Respiratória , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
8.
Ecotoxicol Environ Saf ; 200: 110713, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464436

RESUMO

Calcutta Leather Complex of the state of West Bengal, India has been designated as an industrially active zone with around 400 active tannery units. This area spanning 4.5 km2 is surrounded by human habitation. The soil of this region is contaminated with metal pollutants and exhibited an alteration in selected physicochemical parameters, namely cation exchange capacity, moisture content, pH, total nitrogen, total organic carbon and water holding capacity. Metaphire posthuma, a common variety of endogeic earthworm inhabiting this region is thus continuously exposed to these toxic metals. Coelomocytes, the chief immune effector cells of earthworm presented a shift in phagocytosis, lysosomal membrane stability, lysozyme and phosphatase activity, physiological apoptosis and cell cycle profile of M. posthuma sampled from the soil of tannery industry. Presence of high concentration of toxic metals and change in the physicochemical characteristics of soil led to a state of cellular stress and immunocompromisation in M. posthuma, a common inhabitant of soil of this region. Experimental endpoints bear ecotoxicological significance as biomarkers of physiological stress in earthworm for monitoring the health of soil around this tannery industrial zone.


Assuntos
Metais/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Biomarcadores Ambientais , Humanos , Índia , Indústrias , Lisossomos/efeitos dos fármacos , Muramidase/metabolismo , Oligoquetos/enzimologia , Oligoquetos/imunologia , Oligoquetos/metabolismo , Fagocitose/efeitos dos fármacos , Solo/química
9.
Environ Sci Pollut Res Int ; 26(22): 22625-22640, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31168715

RESUMO

Endogeic earthworm Metaphire posthuma (Valliant, 1868) is a common biological component of the tropical soil of India and other countries. The species is reported to influence fertility and porosity of soil and bear a high composting potential. Intensive agricultural, industrial, and mining activities increase the amount of toxic metals in soil causing physiological adversity in earthworm and other biotic components in soil. Coelomocytes, the chief immunoeffector cells of earthworm, perform diverse physiological functions under the challenge of toxins and pathogens. The experimental earthworms collected separately from soils with agricultural and tannery activities were subjected to quantitation of prooxidation and antioxidation parameters for estimation of oxidative stress. Total count, cellular aggregation, generation of reactive oxygen species (ROS), superoxide anion, nitric oxide, activities of phenoloxidase, superoxide dismutase, catalase and glutathione-s-transferase, and amount of total protein were estimated in the coelomocytes of M. posthuma as experimental end points of toxicity screening. Concentrations of cadmium, chromium, lead, and mercury were determined in the soil samples to assess the degree of toxic contamination. The increase in the amount of prooxidants and decrease in the activities of antioxidant enzymes indicated the signs of oxidative stress in the coelomocytes of the organism. Aggregation of circulating coelomocytes is considered as an immune response involved in pathogen encapsulation response as reported in many invertebrates. Decrease in coelomocyte aggregation in earthworm collected from contaminated sites suggested a state of inappropriate shift of the innate immune status. Toxin-induced oxidative stress and reductions in cell aggregation response are the signs of immunocompromisation of M. posthuma. Present findings bear a prospect of this experimental species as an indicator of soil pollution.


Assuntos
Coelomomyces/fisiologia , Metais/toxicidade , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Agricultura , Animais , Antioxidantes/metabolismo , Cádmio/metabolismo , Catalase/metabolismo , Agregação Celular , Monitoramento Ambiental , Poluição Ambiental , Glutationa Transferase/metabolismo , Índia , Mineração , Oligoquetos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
10.
Mol Cell Biochem ; 452(1-2): 111-121, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30074136

RESUMO

In breast cancer, increased epidermal growth factor receptor (EGFR) expression and phosphorylation have been correlated with increased invasive potential and poor prognosis. Interaction of EGFR with its ligand epidermal growth factor (EGF) activates cellular signalling cascades promoting tumour invasion. Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are upregulated in most cancers and play crucial roles in modulating invasion and metastasis. EGFR-mediated regulation of MMP-2 and MMP-9 in breast cancer was investigated using metastatic human breast ductal carcinoma cell line MCF-7. Culture of MCF-7 cells on 1 µg/ml EGF-coated culture dishes for 24 h led to appreciable increase in MMP-2 and MMP-9 expression and activity. Expression of membrane type-1 matrix metalloproteinase (MT1-MMP) and focal adhesion kinase (FAK), phosphorylation of EGFR and phosphatidylinositol 3' kinase (PI3K), and nuclear translocation of EGFR and cellular migration were also appreciably increased. Targeting EGFR-EGF interactions by treatment of MCF-7 cells with anti-EGFR monoclonal antibodies prior to culture on EGF prevented appreciable upregulation of MMP-2 and MMP-9 expression and activity. Increased expression of MT1-MMP and FAK, phosphorylation of EGFR and PI3K and enhanced cell migration were also inhibited. Treatment of cells with PI3K inhibitor LY294002 prevented upregulation of MMP-2 and MMP-9 indicating that EGFR-mediated signalling for MMP regulation occurs through PI3K. As increased EGFR activity has been observed in highly invasive breast cancers, targeting EGFR-EGF interactions might render such cancers less invasive by inhibiting EGFR-mediated upregulation of MMP-2 and MMP-9 and therefore could be of importance in their clinical management.


Assuntos
Neoplasias da Mama/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Adesão Celular , Receptores ErbB/farmacologia , Feminino , Humanos , Fosforilação , Células Tumorais Cultivadas
11.
Interdiscip Toxicol ; 11(2): 155-168, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31719787

RESUMO

Washing soda has been identified as a precarious contaminant of the freshwater ponds and lakes, the natural habitat of Eunapius carteri. Treatment of sublethal concentrations of washing soda for 384 hours exhibited a significant decrease in the densities of blast like cells, small and large amoebocytes. The percentage occurrence of granular cells and archaeocytes yielded a marked increase against the experimental concentrations of washing soda. Washing soda mediated alterations in the differential cell densities of E. carteri indicative of a state of physiological stress and an undesirable shift in the cellular homeostasis of the organism distributed in polluted environment. Experimental exposure of washing soda yielded a significant increase in the cellular dimensions of large amoebocytes and archaeocytes. Prolonged treatment with washing soda presented a gross reduction in nonself surface adhesion efficacy of E. carteri cells. Experimental concentrations of washing soda resulted in a dose dependent increment in the frequencies of binucleation and micronucleation in the cells of E. carteri. The data were indicative of a high level of genotoxicity of washing soda in E. carteri. The present investigation provides an important information base in understanding the toxin induced chemical stress on the archaic immune defense of a primitive urmetazoa.

12.
Ecotoxicol Environ Saf ; 148: 620-631, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128823

RESUMO

Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 104 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of nanoparticles and sulfate salt of copper in M.posthuma inhabiting the soil of India, an agriculture based country.


Assuntos
Sulfato de Cobre/toxicidade , Cobre/toxicidade , Nanopartículas/toxicidade , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Agricultura , Animais , Ecossistema , Poluição Ambiental , Índia , Monofenol Mono-Oxigenase/metabolismo , Óxido Nítrico/metabolismo , Solo/química , Superóxidos/metabolismo
13.
J Therm Biol ; 59: 1-12, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27264881

RESUMO

Eunapius carteri, a freshwater sponge of India, inhabits the ponds and lakes and experiences variations of temperature and pH of water throughout the year. Sponges bear evolutionary and ecological importance with limited information on their immunological attribute and adaptational resilience in a changing environment. This paper reports temperature and pH specific responses of immune related parameters in sponge maintained in the experimental conditions of laboratory. Innate immunological parameters like phagocytosis and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase activity were estimated in E. carteri at different environmentally realistic water temperatures (10, 20, 30 and 40°C) and pH (6.4, 7.4 and 8.4). Phagocytosis and cytotoxicity are established as important immune parameters of invertebrates. Calalase, an antioxidant enzyme and phosphatases are involved in pathogen destruction and are considered as components of innate immunity. Activities of catalase, acid and alkaline phosphatases were estimated in E. carteri at different thermal regimes and pH. Modulation of phagocytic and cytotoxic responses and the activities of catalase and phosphatases at different water temperatures and pH indicated temperature and pH specific immunological status of E. carteri. Present investigation deals with the effects of selected hydrological parameters on the fundamental immune related parameters in sponge indicating its adaptational plasticity. Immunological resilience of this species in the face of variation of water temperature and pH is thought to be a special adaptive feature of sponge, a reported "living fossil".


Assuntos
Água Doce/química , Poríferos/imunologia , Animais , Concentração de Íons de Hidrogênio , Imunomodulação , Monofenol Mono-Oxigenase/imunologia , Óxido Nítrico/imunologia , Fagocitose , Poríferos/enzimologia , Superóxidos/imunologia , Temperatura
14.
Artigo em Inglês | MEDLINE | ID: mdl-27178357

RESUMO

Washing soda, chemically identified as anhydrous sodium carbonate, is a popular cleaning agent among the rural and urban populations of India which often contaminates the freshwater ponds and lakes, the natural habitat of sponge Eunapius carteri. Present investigation deals with estimation of cellular aggregation, generation of ROS and activities of antioxidant enzymes, lysozyme and acetylcholinesterase in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Prolonged treatment of washing soda inhibited the degree of cellular aggregation. Experimental exposure of 8 and 16mg/l of sodium carbonate for 48h elevated the physiological level of reactive oxygen species (ROS) generation in the agranulocytes, semigranulocytes and granulocytes of E. carteri, whereas, treatment of 192h inhibited the ROS generation in three cellular morphotypes. Activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded to be inhibited under prolonged exposure of washing soda. Washing soda mediated inhibition of ROS generation and depletion in the activities of antioxidant enzymes were indicative to an undesirable shift in cytotoxic status and antioxidative defense in E. carteri. Inhibition in the activity of lysozyme under the treatment of sodium carbonate was suggestive to a severe impairment of the innate immunological efficiency of E. carteri distributed in the washing soda contaminated habitat. Washing soda mediated inhibition in the activity of acetylcholinesterase indicated its neurotoxicity in E. carteri. Washing soda, a reported environmental contaminant, affected adversely the immunophysiological status of E. carteri with reference to cellular aggregation, oxidative stress, antioxidative defense, lysozyme and acetylcholinesterase activity.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/metabolismo , Carbonatos/toxicidade , Muramidase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poríferos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Agregação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Monitoramento Ambiental/métodos , Água Doce , Glutationa Transferase/metabolismo , Índia , Poríferos/enzimologia , Poríferos/imunologia , Medição de Risco , Superóxido Dismutase/metabolismo , Fatores de Tempo
15.
Ecotoxicol Environ Saf ; 122: 331-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26313128

RESUMO

Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges.


Assuntos
Apoptose/efeitos dos fármacos , Carbonatos/toxicidade , Água Doce/química , Membranas Intracelulares/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Poríferos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Monitoramento Ambiental/métodos , Índia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Poríferos/metabolismo
16.
Zoology (Jena) ; 118(1): 8-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25547566

RESUMO

The freshwater sponge Eunapius carteri (Porifera: Demospongiae: Spongillidae), a resident of Indian freshwater ecosystems, has pharmaceutical and ecological potential, but there is inadequate information on its cellular spectrum and cell-mediated immune responses. Microscopical analysis revealed the existence of eight distinct cellular variants, i.e. blast-like cells, choanocytes, small amoebocytes, granular cells, pinacocytes, large amoebocytes, archaeocytes and sclerocytes. The cells were isolated by density gradient centrifugation and flow cytometry and used for a morphofunctional analysis. We investigated the phagocytic efficiency of E. carteri cells under the challenge of yeast particles in vitro and spectrophotometrically quantified the generation of cytotoxic molecules (superoxide anions and nitric oxide) in different isolated cellular fractions. The two cell separating technologies did not yield any significant differences in the major findings on morphology, phagocytic response and generation of superoxide anions and nitric oxide. Archaeocytes, granular cells and large amoebocytes were identified as chief phagocytes with a high phagocytic potential as recorded by light microscopy. Archaeocytes were the principal generators of superoxide anions, whereas nitric oxide was recorded in the fractions rich in archaeocytes and large amoebocytes. The present investigation thus provides useful information regarding cellular variation, cytotoxic status and innate phagocytic response of the cells of E. carteri, a common but less studied sponge of India.


Assuntos
Fagocitose , Poríferos/citologia , Animais , Separação Celular , Centrifugação com Gradiente de Concentração , Citometria de Fluxo , Água Doce , Imunidade Inata , Índia , Poríferos/imunologia , Leveduras/imunologia
17.
Ecotoxicol Environ Saf ; 113: 112-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25497767

RESUMO

The natural habitat of sponge, Eunapius carteri faces an ecotoxicological threat of contamination by washing soda, a common household cleaning agent of India. Washing soda is chemically known as sodium carbonate and is reported to be toxic to aquatic organisms. Domestic effluent, drain water and various human activities in ponds and lakes have been identified as the major routes of washing soda contamination of water. Phagocytosis and generation of cytotoxic molecules are important immunological responses offered by the cells of sponges against environmental toxins and pathogens. Present study involves estimation of phagocytic response and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase in E. carteri under the environmentally realistic concentrations of washing soda. Sodium carbonate exposure resulted in a significant decrease in the phagocytic response of sponge cells under 4, 8, 16 mg/l of the toxin for 96h and all experimental concentrations of the toxin for 192h. Washing soda exposure yielded an initial increase in the generation of the superoxide anion and nitric oxide followed by a significant decrease in generation of these cytotoxic agents. Sponge cell generated a high degree of phenoloxidase activity under the experimental exposure of 2, 4, 8, 16 mg/l of sodium carbonate for 96 and 192 h. Washing soda induced alteration of phagocytic and cytotoxic responses of E. carteri was indicative to an undesirable shift in their immune status leading to the possible crises of survival and propagation of sponges in their natural habitat.


Assuntos
Carbonatos/toxicidade , Poríferos/efeitos dos fármacos , Poluentes da Água/toxicidade , Animais , Água Doce , Índia , Monofenol Mono-Oxigenase/metabolismo , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Poríferos/enzimologia , Poríferos/imunologia , Poríferos/metabolismo , Superóxidos/metabolismo
18.
Fish Shellfish Immunol ; 35(2): 499-512, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23727281

RESUMO

Bellamya bengalensis (Gastropoda: Prosobranchia) and Lamellidens marginalis (Bivalvia: Eulamellibranchiata) are the molluscs of Indian freshwater ecosystem and important biological resources. These edible species bear economical, ecological, nutritional and medicinal importance. Natural habitat of these organisms is under the ecological threat of contamination by cypermethrin and fenvalerate, the common pyrethroid pesticides of India. Hemocytes are chief immunoeffector cells of molluscs which exhibit responsiveness against environmental toxins and perform diverse immunological functions including phagocytosis, encapsulation and cytotoxicity. Experimental exposure of cypermethrin and fenvalerate resulted in significant shift in density and morphological damage in hemocytes of B. bengalensis and L. marginalis respectively. Pyrethroid induced fragility and destabilization of hemocyte lysosomal membrane was recorded and proposed as an indication of toxin induced stress in molluscs. Apoptosis is an immunologically important cellular response which is modulated by environmental toxins. Pyrethroid exposure suppressed the physiological level of apoptosis and necrosis in hemocytes of B. bengalensis and L. marginalis indicating possible impairment of apoptosis mediated immunoprotection. Differential responses of B. bengalensis and L. marginalis hemocytes may be due to species specificity, toxin specificity, nonidentical immune strategies of Gastropoda and Bivalvia, specific habitat preference and related ecological niches.


Assuntos
Bivalves/efeitos dos fármacos , Inseticidas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Caramujos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Bivalves/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Hemócitos/citologia , Hemócitos/efeitos dos fármacos , Hemócitos/patologia , Índia , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Caramujos/fisiologia
19.
Ecotoxicol Environ Saf ; 94: 153-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23711797

RESUMO

The emerging pollutants in diverse habitats have created a need for basic research towards profiling the structural and functional parameters ranging from cell to organs in a diversity of species, thus enabling realistic analyses of the risks imposed by the environmental stressors. In the present study, the circulating haemocytes and digestive gland of an edible bivalve mollusc from eastern India, Lamellidens marginalis, were investigated for morphological and functional attributes under the challenge of inorganic arsenite-an up-coming threat to the natural freshwater reserves of the Indo-Gangetic flood plains. The molluscs were exposed to three sublethal concentrations of sodium arsenite under controlled laboratory conditions for a maximum time span of thirty days. The toxic exposure caused significant alteration in the haemocytometric profile. It inhibited the activities of phosphatases, transaminases and acetylcholinesterase which are iconic for assessment of the physiological homoeostasis in the haemocytes and digestive tissue. At both cellular and tissue level, immune surveillance was compromised through inhibited generation of nitric oxide, phenoloxidase and superoxide anions. Moreover, exposure to sodium arsenite promoted xenometabolic and oxidative stress in both haemocytes and digestive gland by reducing the activity of glutathione S-transferase and catalase. It inflicted inflammatory damage and promoted neplasia in the digestive tissue as evident from the histopathological observations. The findings would be crucial to gauge the impending threats from inorganic arsenite exposure to the freshwater invertebrates. Further, it creates an avenue to speculate a new model for arsenic biomonitoring.


Assuntos
Arsenitos/toxicidade , Unionidae/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/metabolismo , Catalase/metabolismo , Monitoramento Ambiental , Glutationa Transferase/metabolismo , Hemócitos/fisiologia , Índia , Monofenol Mono-Oxigenase/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo
20.
Fish Shellfish Immunol ; 34(1): 244-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23194745

RESUMO

A comparative analyses of hemocytes of molluscs, Pila globosa (Gastropoda: Prosobranchia), Bellamya bengalensis (Gastropoda: Prosobranchia) and Lamellidens marginalis (Bivalvia: Eulamellibranchiata) were carried out for morphotype and subpopulation identification, analyses of phagocytosis and generation of cytotoxic agents. Flow cytometry and microscopic analyses of hemocytes revealed the existence of agranulocytes (blast like cells, round hyalinocytes and spindle hyalinocytes), semigranulocytes (semigranular asterocytes and round semigranulocytes) and granulocytes (round granulocytes, spindle granulocytes and granular asterocytes) as three morphotypes. In P. globosa, granulocytes and semigranulocytes and in B. bengalensis granulocytes and agranulocytes are the chief phagocytes and major producers of superoxide anion and nitric oxide. In L. marginalis, granulocytes were identified as principal phagocytes with prominent activity of superoxide anion and nitric oxide. Highest activity of phenoloxidase was recorded in the agranulocytes of P. globosa with moderate activities among other morphotypes of all three species. Differential result may be due to species specific response, non-identical habitat preference and related adaptation of the species to their different ecological niches.


Assuntos
Caramujos/citologia , Caramujos/imunologia , Unionidae/citologia , Unionidae/imunologia , Animais , Meio Ambiente , Citometria de Fluxo , Hemócitos/citologia , Hemócitos/ultraestrutura , Índia , Microscopia de Contraste de Fase , Monofenol Mono-Oxigenase/metabolismo , Óxido Nítrico/metabolismo , Fagocitose , Caramujos/enzimologia , Caramujos/metabolismo , Superóxidos/metabolismo , Unionidae/enzimologia , Unionidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...