Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 710, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851804

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are widely used for depression based on the monoamine deficiency hypothesis. However, the clinical use of these agents is controversial, in part because of their variable clinical efficacy and in part because of their delayed onset of action. Because of the complexities involved in replicating human disease and clinical dosing in animal models, the scientific community has not reached a consensus on the reasons for these phenomena. In this work, we create a theoretical hippocampal model incorporating escitalopram's pharmacokinetics, pharmacodynamics (competitive and non-competitive inhibition, and serotonin transporter (SERT) internalization), inflammation, and receptor dynamics. With this model, we simulate chronic oral escitalopram in mice showing that days to weeks are needed for serotonin levels to reach steady-state. We show escitalopram's chemical efficacy is diminished under inflammation. Our model thus offers mechanisms for how chronic escitalopram affects brain serotonin, emphasizing the importance of optimized dose and time for future antidepressant discoveries.


Assuntos
Escitalopram , Inflamação , Inibidores Seletivos de Recaptação de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Camundongos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Escitalopram/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Serotonina/metabolismo , Humanos , Citalopram/farmacologia
2.
Cell Chem Biol ; 30(12): 1557-1570.e6, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992715

RESUMO

Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of escitalopram, fluoxetine, reboxetine, and ketamine. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking, and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis, and the monoamine hypothesis).


Assuntos
Ketamina , Serotonina , Camundongos , Animais , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Ketamina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Fluoxetina/farmacologia
3.
Res Sq ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034599

RESUMO

Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (synaptic plasticity and neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of antidepressants. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis and the monoamine hypothesis).

4.
Math Biosci ; 356: 108956, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581152

RESUMO

The circadian clock in the mammalian brain comprises interlocked molecular feedback loops that have downstream effects on important physiological functions such as the sleep-wake cycle and hormone regulation. Experiments have shown that the circadian clock also modulates the synthesis and breakdown of the neurotransmitter dopamine. Imbalances in dopamine are linked to a host of neurological conditions including Parkinson's disease, attention-deficit/hyperactivity disorder, and mood disorders, and these conditions are often accompanied by circadian disruptions. We have previously created a mathematical model using nonlinear ordinary differential equations to describe the influences of the circadian clock on dopamine at the molecular level. Recent experiments suggest that dopamine reciprocally influences the circadian clock. Dopamine receptor D1 (DRD1) signaling has been shown to aid in the entrainment of the clock to the 24-hour light-dark cycle, but the underlying mechanisms are not well understood. In this paper, we use our mathematical model to support the experimental hypothesis that DRD1 signaling promotes circadian entrainment by modulating the clock's response to light. We model the effects of a phase advance or delay, as well as the therapeutic potential of a REV-ERB agonist. In addition to phase shifts, we study the influences of photoperiod, or day length, in the mathematical model, connect our findings with the experimental and clinical literature, and determine the parameter that affects the critical photoperiod that signals seasonal changes to physiology.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Ritmo Circadiano/fisiologia , Dopamina , Fotoperíodo , Relógios Circadianos/fisiologia , Transdução de Sinais , Mamíferos/fisiologia
5.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499189

RESUMO

Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.


Assuntos
Histamina , Receptores Histamínicos H3 , Feminino , Animais , Masculino , Camundongos , Histamina/metabolismo , Serotonina/metabolismo , Receptores Histamínicos H3/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/metabolismo , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/metabolismo , Encéfalo/metabolismo
6.
Anal Chem ; 94(25): 8847-8856, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35713335

RESUMO

Depression is quickly becoming one of the world's most pressing public health crises, and there is an urgent need for better diagnostics and therapeutics. Behavioral models in animals and humans have not adequately addressed the diagnosis and treatment of depression, and biomarkers of mental illnesses remain ill-defined. It has been very difficult to identify biomarkers of depression because of in vivo measurement challenges. While our group has made important strides in developing in vivo tools to measure such biomarkers (e.g., serotonin) in mice using voltammetry, these tools cannot be easily applied for depression diagnosis and drug screening in humans due to the inaccessibility of the human brain. In this work, we take a chemical approach, ex vivo, to introduce a human-derived system to investigate brain serotonin. We utilize human induced pluripotent stem cells differentiated into serotonin neurons and establish a new ex vivo model of real-time serotonin neurotransmission measurements. We show that evoked serotonin release responds to stimulation intensity and tryptophan preloading, and that serotonin release and reuptake kinetics resemble those found in vivo in rodents. Finally, after selective serotonin reuptake inhibitor (SSRI) exposure, we find dose-dependent internalization of the serotonin reuptake transporters (a signature of the in vivo response to SSRI). Our new human-derived chemical model has great potential to provide an ex vivo chemical platform as a translational tool for in vivo neuropsychopharmacology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Serotonina , Animais , Biomarcadores , Humanos , Camundongos , Neurônios , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
7.
J Invasive Cardiol ; 34(6): E433-E441, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35593541

RESUMO

BACKGROUND: Patients with small aortic annuli (SAA) are prone to higher post-transcatheter aortic valve replacement (TAVR) transvalvular gradients and development of prosthesis-patient mismatch (PPM). In many patients with SAA, the choice of TAVR valve commonly involves choosing between the 26-mm Medtronic Evolut 2 (ME26) or the 23-mm Edwards Sapien 3 valve (ES23). We compared echocardiographic and clinical outcomes in patients with SAA undergoing TAVR with either valve. METHODS: We queried the Providence St. Joseph Health Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry database for patients undergoing TAVR with either the ES23 or ME26 between July 2015 and December 2018 at 11 hospitals. Post-TAVR echocardiographic and clinical results in-hospital, at 1 month, and at 1 year were examined. High gradient (HG) was defined as mean gradient (MG) ≥20 mm Hg. RESULTS: We identified 1162 patients with SAA undergoing TAVR with either the ME26 (n = 233) or ES23 valve (n = 929). Baseline characteristics between groups were similar. At 1 month, the ME26 was associated with a lower MG than the ES23 (7.7 ± 4.7 mm Hg vs 13.1 ± 4.9 mm Hg; P<.001) and moderate or severe PPM (11% and 3% vs 27% and 13%; P<.001). Occurrence of HG at 1 year was lower with the ME26 valve vs the ES23 valve (0% vs 15%; P<.001). In-hospital and follow-up clinical outcomes to 1 year were similar for both groups. CONCLUSION: TAVR in SAA with the ME26 is associated with lower incidence of HG or PPM compared with the ES23. While clinical outcomes at 1 year were similar, the long-term implications of these findings remain unknown.


Assuntos
Estenose da Valva Aórtica , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/cirurgia , Próteses Valvulares Cardíacas/efeitos adversos , Humanos , Desenho de Prótese , Fatores de Risco , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento
8.
J Math Biol ; 84(6): 40, 2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35461398

RESUMO

In insect respiration, oxygen from the air diffuses through a branching system of air-filled tubes to the cells of the body and carbon dioxide produced in cellular respiration diffuses out. The tracheal system has a very large surface area, so water loss is a potential threat and the question of how insects regulate oxygen uptake and water loss has been an important issue in insect physiology for the past century. The tracheal system starts at spiracles on the surface of the body that insects can open and close, and three phases are observed experimentally, open or closed for relatively long periods of time and opening and closing rapidly, which is called fluttering. In previous work we have shown that during this flutter phase, no matter how small the percentage of time that the spiracles are open, the insect can absorb almost as much oxygen as if the spiracle were always open, if the insect flutters fast enough. This left open the question of water loss during the flutter phase, which is the question addressed in this paper. We formulate a stochastic diffusion-convection model for the concentration of water vapor in the tracheae. Mathematical analysis of the model yields an explicit formula for water loss as a function of six non-dimensional parameters and we use experimental data from various insects to show that, for parameters in the physiological ranges, water loss during the flutter phase is approximately proportional to the percentage of time open. This means that the insect can solve the oxygen uptake versus water loss problem by choosing to have their spiracles open a small percentage of time during the flutter phase and fluttering rapidly.


Assuntos
Insetos , Respiração , Animais , Dióxido de Carbono , Insetos/fisiologia , Oxigênio , Sistema Respiratório
9.
PLoS Comput Biol ; 17(12): e1009708, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914693

RESUMO

Many enzymes in one-carbon metabolism (OCM) are up- or down-regulated by the sex hormones which vary diurnally and throughout the menstrual cycle. During pregnancy, estradiol and progesterone levels increase tremendously to modulate physiological changes in the reproductive system. In this work, we extend and improve an existing mathematical model of hepatic OCM to understand the dynamic metabolic changes that happen during the menstrual cycle and pregnancy due to estradiol variation. In particular, we add the polyamine drain on S-adenosyl methionine and the direct effects of estradiol on the enzymes cystathionine ß-synthase (CBS), thymidylate synthase (TS), and dihydrofolate reductase (DHFR). We show that the homocysteine concentration varies inversely with estradiol concentration, discuss the fluctuations in 14 other one-carbon metabolites and velocities throughout the menstrual cycle, and draw comparisons with the literature. We then use the model to study the effects of vitamin B12, vitamin B6, and folate deficiencies and explain why homocysteine is not a good biomarker for vitamin deficiencies. Additionally, we compute homocysteine throughout pregnancy, and compare the results with experimental data. Our mathematical model explains how numerous homeostatic mechanisms in OCM function and provides new insights into how homocysteine and its deleterious effects are influenced by estradiol. The mathematical model can be used by others for further in silico experiments on changes in one-carbon metabolism during the menstrual cycle and pregnancy.


Assuntos
Carbono/metabolismo , Ciclo Menstrual/metabolismo , Gravidez/metabolismo , Estradiol/metabolismo , Feminino , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Humanos , S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo
10.
J Neurosci ; 41(30): 6564-6577, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34083254

RESUMO

Commonly prescribed selective serotonin reuptake inhibitors (SSRIs) inhibit the serotonin transporter to correct a presumed deficit in extracellular serotonin signaling during depression. These agents bring clinical relief to many who take them; however, a significant and growing number of individuals are resistant to SSRIs. There is emerging evidence that inflammation plays a significant role in the clinical variability of SSRIs, though how SSRIs and inflammation intersect with synaptic serotonin modulation remains unknown. In this work, we use fast in vivo serotonin measurement tools to investigate the nexus between serotonin, inflammation, and SSRIs. Upon acute systemic lipopolysaccharide (LPS) administration in male and female mice, we find robust decreases in extracellular serotonin in the mouse hippocampus. We show that these decreased serotonin levels are supported by increased histamine activity (because of inflammation), acting on inhibitory histamine H3 heteroreceptors on serotonin terminals. Importantly, under LPS-induced histamine increase, the ability of escitalopram to augment extracellular serotonin is impaired because of an off-target action of escitalopram to inhibit histamine reuptake. Finally, we show that a functional decrease in histamine synthesis boosts the ability of escitalopram to increase extracellular serotonin levels following LPS. This work reveals a profound effect of inflammation on brain chemistry, specifically the rapidity of inflammation-induced decreased extracellular serotonin, and points the spotlight at a potentially critical player in the pathology of depression, histamine. The serotonin/histamine homeostasis thus, may be a crucial new avenue in improving serotonin-based treatments for depression.SIGNIFICANCE STATEMENT Acute LPS-induced inflammation (1) increases CNS histamine, (2) decreases CNS serotonin (via inhibitory histamine receptors), and (3) prevents a selective serotonin reuptake inhibitor (SSRI) from effectively increasing extracellular serotonin. A targeted depletion of histamine recovers SSRI-induced increases in extracellular hippocampal serotonin.


Assuntos
Citalopram/farmacologia , Hipocampo/efeitos dos fármacos , Histamina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Theor Biol Med Model ; 18(1): 8, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596936

RESUMO

BACKGROUND: The superchiasmatic nucleus (SCN) serves as the primary circadian (24hr) clock in mammals and is known to control important physiological functions such as the sleep-wake cycle, hormonal rhythms, and neurotransmitter regulation. Experimental results suggest that some of these functions reciprocally influence circadian rhythms, creating a highly complex network. Among the clock's downstream products, orphan nuclear receptors REV-ERB and ROR are particularly interesting because they coordinately modulate the core clock circuitry. Recent experimental evidence shows that REV-ERB and ROR are not only crucial for lipid metabolism but are also involved in dopamine (DA) synthesis and degradation, which could have meaningful clinical implications for conditions such as Parkinson's disease and mood disorders. METHODS: We create a mathematical model consisting of differential equations that express how the circadian variables are influenced by light, how REV-ERB and ROR feedback to the clock, and how REV-ERB, ROR, and BMAL1-CLOCK affect the dopaminergic system. The structure of the model is based on the findings of experimentalists. RESULTS: We compare our model predictions to experimental data on clock components in different light-dark conditions and in the presence of genetic perturbations. Our model results are consistent with experimental results on REV-ERB and ROR and allow us to predict the circadian variations in tyrosine hydroxylase and monoamine oxidase seen in experiments. By connecting our model to an extant model of dopamine synthesis, release, and reuptake, we are able to predict circadian oscillations in extracellular DA and homovanillic acid that correspond well with experimental observations. CONCLUSIONS: The predictions of the mathematical model are consistent with a wide variety of experimental observations. Our calculations show that the mechanisms proposed by experimentalists by which REV-ERB, ROR, and BMAL1-CLOCK influence the DA system are sufficient to explain the circadian oscillations observed in dopaminergic variables. Our mathematical model can be used for further investigations of the effects of the mammalian circadian clock on the dopaminergic system. The model can also be used to predict how perturbations in the circadian clock disrupt the dopaminergic system and could potentially be used to find drug targets that ameliorate these disruptions.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Dopamina , Mamíferos , Modelos Biológicos
12.
PLoS One ; 15(5): e0232450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32433692

RESUMO

Many insects show discontinuous respiration with three phases, open, closed, and fluttering, in which the spiracles open and close rapidly. The relative durations of the three phases and the rate of fluttering during the flutter phase vary for individual insects depending on developmental stage and activity, vary between insects of the same species, and vary even more between different species. We studied how the rate of oxygen uptake during the flutter phase depends on the rate of fluttering. Using a mathematical model of oxygen diffusion in the insect tracheal system, we derive a formula for oxygen uptake during the flutter phase and how it depends on the length of the tracheal system, percentage of time open during the flutter phase, and the flutter rate. Surprisingly, our results show that an insect can have its spiracles closed a high percentage of time during the flutter phase and yet receive almost as much oxygen as if the spiracles were always open, provided the spiracles open and close rapidly. We investigate the respiratory gain due to fluttering for four specific insects. Our formula shows that respiratory gain increases with body size and with increased rate of fluttering. Therefore, insects can regulate their rate of oxygen uptake by varying the rate of fluttering while keeping the spiracles closed during a large fraction of the time during the flutter phase. We also use a mathematical model to show that water loss is approximately proportional to the percentage of time the spiracles are open. Thus, insects can achieve both high oxygen intake and low water loss by keeping the spiracles closed most of the time and fluttering while open, thereby decoupling the challenge of preventing water loss from the challenge of obtaining adequate oxygen uptake.


Assuntos
Insetos/fisiologia , Modelos Biológicos , Oxigênio/fisiologia , Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Animais , Água Corporal/metabolismo , Himenópteros/fisiologia , Insetos/anatomia & histologia , Lepidópteros/fisiologia , Conceitos Matemáticos , Respiração , Mecânica Respiratória/fisiologia , Traqueia/anatomia & histologia , Traqueia/fisiologia
13.
J Neurochem ; 153(1): 33-50, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31419307

RESUMO

It is important to monitor serotonin neurochemistry in the context of brain disorders. Specifically, a better understanding of biophysical alterations and associated biochemical functionality within subregions of the brain will enable better of understanding of diseases such as depression. Fast voltammetric tools at carbon fiber microelectrodes provide an opportunity to make direct evoked and ambient serotonin measurements in vivo in mice. In this study, we characterize novel stimulation and measurement circuitries for serotonin analyses in brain regions relevant to psychiatric disease. Evoked and ambient serotonin in these brain areas, the CA2 region of the hippocampus and the medial prefrontal cortex, are compared to ambient and evoked serotonin in the substantia nigra pars reticulata, an area well established previously for serotonin measurements with fast voltammetry. Stimulation of a common axonal location evoked serotonin in all three brain regions. Differences are observed in the serotonin release and reuptake profiles between these three brain areas which we hypothesize to arise from tissue physiology heterogeneity around the carbon fiber microelectrodes. We validate this hypothesis mathematically and via confocal imaging. We thereby show that fast voltammetric methods can provide accurate information about local physiology and highlight implications for chemical mapping. Cover Image for this issue: doi: 10.1111/jnc.14739.


Assuntos
Encéfalo/fisiopatologia , Técnicas Eletroquímicas/métodos , Transtornos Mentais/fisiopatologia , Serotonina/análise , Serotonina/metabolismo , Animais , Axônios/fisiologia , Química Encefálica/fisiologia , Fibra de Carbono , Estimulação Elétrica , Potenciais Evocados , Hipocampo/química , Masculino , Feixe Prosencefálico Mediano , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Modelos Teóricos , Córtex Pré-Frontal/química , Substância Negra/química
15.
Front Neurosci ; 13: 362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110471

RESUMO

Depression is a highly prevalent psychiatric disorder, impacting females at a rate roughly twice that of males. This disparity has become the focus of many studies which are working to determine if there are environmental or biological underpinnings to depression pathology. The biology of depression is not well understood, but experts agree that a key neurotransmitter of interest is serotonin. Most research on basic serotonin neurochemistry, by us and others, has predominantly focused on male models. Thus, it is now critical to include female models to decipher possible fundamental differences between the sexes that may underlie this disorder. In this paper, we seek to determine any such differences using fast-scan cyclic voltammetry (FSCV) and fast-scan controlled adsorption voltammetry. These techniques allow us to probe the serotonergic system via measurement of evoked and ambient serotonin at carbon fiber microelectrodes (CFMs). Our data reveal no statistical differences, in the hippocampus, in female serotonin chemistry during the different stages of the estrous cycle compared to the mean female response. Furthermore, no difference was observed in evoked serotonin release and reuptake, nor ambient extracellular serotonin levels between male and female mice. We applied a previously developed mathematical model that fits our serotonin signals as a function of several synaptic processes that control the extracellular levels of this transmitter. We used the model to study potential system differences between males and females. One hypothesis brought fourth, that female mice exhibit tighter autoreceptor control of serotonin, is validated via literature and methiothepin challenge. We postulate that this tight regulation may act as a control mechanism against changes in the serotonin signal mediated by estrogen spikes. Importantly, this safety mechanism has no consequence for acutely administered escitalopram's (ESCIT's) ability to increase extracellular serotonin between the sexes. This work demonstrates little fundamental differences in in vivo hippocampal serotonin between the sexes, bar control mechanisms in female mice that can be observed under extraneous circumstances. We thus highlight the importance of considering sex as a biological factor in determining pharmacodynamics for personalized medical treatments that involve targeting serotonin receptors.

16.
Wiley Interdiscip Rev Syst Biol Med ; 11(3): e1440, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30371009

RESUMO

All organisms are subject to large amounts of genetic and environmental variation and have evolved mechanisms that allow them to function well in spite of these challenges. This property is generally referred to as robustness. We start with the premise that phenotypes arise from dynamical systems and are therefore system properties. Phenotypes occur at all levels of the biological organizational hierarchy, from gene products, to biochemical pathways, to cells, tissues, organs, appendages, and whole bodies. Phenotypes at all these levels are subject to environmental and genetic challenges against which their form and function need to be protected. The mechanisms that can produce robustness are diverse and several different kinds often operate simultaneously. We focus, in particular, on homeostatic mechanisms that dynamically maintain form and function against varying environmental and genetic factors. Understanding how homeostatic mechanisms operate, how they reach their set point, and the nature of the set point pose difficult challenges. In developmental systems, homeostatic mechanisms make the progression of morphogenesis relatively insensitive to genetic and environmental variation so that the outcomes vary little, even in the presence of severe mutational and environmental stress. Accordingly, developmental systems give the appearance of being goal-oriented, but how the target phenotype is encoded is not known. We discuss why and how individual variation poses challenges for mathematical modeling of biological systems, and conclude with an explanation of how system population models are a useful method for incorporating individual variation into deterministic ordinary differential equation (ODE) models. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Physiology > Organismal Responses to Environment Biological Mechanisms > Regulatory Biology.


Assuntos
Biologia de Sistemas , Animais , Carbono/metabolismo , Desenvolvimento Embrionário , Variação Genética , Humanos , Modelos Biológicos , Fenótipo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
17.
BMC Syst Biol ; 12(1): 89, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355281

RESUMO

BACKGROUND: There are large differences between men and women of child-bearing age in the expression level of 5 key enzymes in one-carbon metabolism almost certainly caused by the sex hormones. These male-female differences in one-carbon metabolism are greatly accentuated during pregnancy. Thus, understanding the origin and consequences of sex differences in one-carbon metabolism is important for precision medicine. RESULTS: We have created a mathematical model of hepatic one-carbon metabolism based on the underlying physiology and biochemistry. We use the model to investigate the consequences of sex differences in gene expression. We give a mechanistic understanding of observed concentration differences in one-carbon metabolism and explain why women have lower S-andenosylmethionine, lower homocysteine, and higher choline and betaine. We give a new explanation of the well known phenomenon that folate supplementation lowers homocysteine and we show how to use the model to investigate the effects of vitamin deficiencies, gene polymorphisms, and nutrient input changes. CONCLUSIONS: Our model of hepatic one-carbon metabolism is a useful platform for investigating the mechanistic reasons that underlie known associations between metabolites. In particular, we explain how gene expression differences lead to metabolic differences between males and females.


Assuntos
Carbono/metabolismo , Fígado/metabolismo , Caracteres Sexuais , Betaína/metabolismo , Colina/metabolismo , Feminino , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Humanos , Fígado/enzimologia , Masculino , Modelos Biológicos
18.
Integr Comp Biol ; 57(2): 171-184, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859407

RESUMO

SYNOPSIS: Gene regulatory networks, cellular biochemistry, tissue function, and whole body physiology are imbued with myriad overlapping and interacting homeostatic mechanisms that ensure that many phenotypes are robust to genetic and environmental variation. Animals also often have plastic responses to environmental variables, which means that many different phenotypes can correspond to a single genotype. Since natural selection acts on phenotypes, this raises the question of how selection can act on the genome if genotypes are decoupled from phenotypes by robustness and plasticity mechanisms. The answer can be found in the systems biology of the homeostatic mechanisms themselves. First, all such mechanisms operate over a limited range and outside that range the controlled variable changes rapidly allowing natural selection to act. Second, mutations and environmental stressors can disrupt homeostatic mechanisms, exposing cryptic genetic variation and allowing natural selection to act. We illustrate these ideas by examining the systems biology of four specific examples. We show how it is possible to analyze and visualize the roles of specific genes and specific polymorphisms in robustness in the context of large and realistic nonlinear systems. We also describe a new method, system population models, that allows one to connect causal dynamics to the variable outcomes that one sees in biological populations with large variation.


Assuntos
Fenótipo , Biologia de Sistemas , Animais , Meio Ambiente , Variação Genética , Genótipo , Seleção Genética
19.
J Neurochem ; 138(3): 374-83, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167463

RESUMO

Histamine and serotonin are neuromodulators which facilitate numerous, diverse neurological functions. Being co-localized in many brain regions, these two neurotransmitters are thought to modulate one another's chemistry and are often implicated in the etiology of disease. Thus, it is desirable to interpret the in vivo chemistry underlying neurotransmission of these two molecules to better define their roles in health and disease. In this work, we describe a voltammetric approach to monitoring serotonin and histamine simultaneously in real time. Via electrical stimulation of the axonal bundles in the medial forebrain bundle, histamine release was evoked in the mouse premammillary nucleus. We found that histamine release was accompanied by a rapid, potent inhibition of serotonin in a concentration-dependent manner. We developed mathematical models to capture the experimental time courses of histamine and serotonin, which necessitated incorporation of an inhibitory receptor on serotonin neurons. We employed pharmacological experiments to verify that this serotonin inhibition was mediated by H3 receptors. Our novel approach provides fundamental mechanistic insights that can be used to examine the full extent of interconnectivity between histamine and serotonin in the brain. Histamine and serotonin are co-implicated in many of the brain's functions. In this paper, we develop a novel voltammetric method for simultaneous real-time monitoring of histamine and serotonin in the mouse premammillary nucleus. Electrical stimulation of the medial forebrain bundle evokes histamine and inhibits serotonin release. We show voltammetrically, mathematically, and pharmacologically that this serotonin inhibition is H3 receptor mediated.


Assuntos
Histamina/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Serotonina/metabolismo , Animais , Estimulação Elétrica/métodos , Liberação de Histamina/efeitos dos fármacos , Masculino , Feixe Prosencefálico Mediano/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais , Receptores Histamínicos H3/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
20.
BMC Syst Biol ; 9: 69, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467983

RESUMO

BACKGROUND: Methyltransferase (MT) reactions, in which methyl groups are attached to substrates, are fundamental to many aspects of cell biology and human physiology. The universal methyl donor for these reactions is S-adenosylmethionine (SAM) and this presents the cell with an important regulatory problem. If the flux along one pathway is changed then the SAM concentration will change affecting all the other MT pathways, so it is difficult for the cell to regulate the pathways independently. METHODS: We created a mathematical model, based on the known biochemistry of the folate and methionine cycles, to study the regulatory mechanisms that enable the cell to overcome this difficulty. Some of the primary mechanisms are long-range allosteric interactions by which substrates in one part of the biochemical network affect the activity of enzymes at distant locations in the network (not distant in the cell). Because of these long-range allosteric interactions, the dynamic behavior of the network is very complicated, and so mathematical modeling is a useful tool for investigating the effects of the regulatory mechanisms and understanding the complicated underlying biochemistry and cell biology. RESULTS: We study the allosteric binding of 5-methyltetrahydrofolate (5 mTHF) to glycine-N-methyltransferase (GNMT) and explain why data in the literature implies that when one molecule binds, GNMT retains half its activity. Using the model, we quantify the effects of different regulatory mechanisms and show how cell processes would be different if the regulatory mechanisms were eliminated. In addition, we use the model to interpret and understand data from studies in the literature. Finally, we explain why a full understanding of how competing MTs are regulated is important for designing intervention strategies to improve human health. CONCLUSIONS: We give strong computational evidence that once bound GNMT retains half its activity. The long-range allosteric interactions enable the cell to regulate the MT reactions somewhat independently. The low K m values of many MTs also play a role because the reactions then run near saturation and changes in SAM have little effect. Finally, the inhibition of the MTs by the product S-adenosylhomocysteine also stabilizes reaction rates against changes in SAM.


Assuntos
Glicina N-Metiltransferase/química , Redes e Vias Metabólicas , Metiltransferases/química , Modelos Químicos , Tetra-Hidrofolatos/química , Arsênio/química , Arsênio/metabolismo , Bangladesh , Ácido Fólico/química , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Glicina N-Metiltransferase/metabolismo , Inativação Metabólica , Cinética , Metiltransferases/metabolismo , Ligação Proteica , Especificidade por Substrato , Tetra-Hidrofolatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...