Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(7): 1090-1101, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36300303

RESUMO

Cysteamine is currently the only therapy for nephropathic cystinosis. It significantly improves life expectancy and delays progression to end-stage kidney disease; however, it cannot prevent it. Unfortunately, compliance to therapy is often weak, particularly during adolescence. Therefore, finding better treatments is a priority in the field of cystinosis. Previously, we found that genistein, an isoflavone particularly enriched in soy, can revert part of the cystinotic cellular phenotype that is not sensitive to cysteamine in vitro. To test the effects of genistein in vivo, we fed 2-month-old wild-type and Ctns-/- female mice with either a control diet, a genistein-containing diet or a cysteamine-containing diet for 14 months. Genistein (160 mg/kg/day) did not affect the growth of the mice or hepatic functionality. Compared with untreated mice at 16 months, Ctns-/- mice fed with genistein had lower cystine concentrations in their kidneys, reduced formation of cystine crystals, a smaller number of LAMP1-positive structures and an overall better-preserved parenchymal architecture. Cysteamine (400 mg/kg/day) was efficient in reverting the lysosomal phenotype and in preventing the development of renal lesions. These preclinical data indicate that genistein ameliorates kidney injury resulting from cystinosis with no side effects. Genistein therapy represents a potential treatment to improve the outcome for patients with cystinosis.


Assuntos
Cistinose , Nefropatias , Animais , Feminino , Camundongos , Cisteamina/uso terapêutico , Cistina/uso terapêutico , Cistinose/tratamento farmacológico , Cistinose/genética , Modelos Animais de Doenças , Genisteína/farmacologia , Genisteína/uso terapêutico , Rim
2.
Hum Mol Genet ; 31(13): 2262-2278, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35137071

RESUMO

Recessive mutations in the CTNS gene encoding the lysosomal transporter cystinosin cause cystinosis, a lysosomal storage disease leading to kidney failure and multisystem manifestations. A Ctns knockout mouse model recapitulates features of cystinosis, but the delayed onset of kidney manifestations, phenotype variability and strain effects limit its use for mechanistic and drug development studies. To provide a better model for cystinosis, we generated a Ctns knockout rat model using CRISPR/Cas9 technology. The Ctns-/- rats display progressive cystine accumulation and crystal formation in multiple tissues including kidney, liver and thyroid. They show an early onset and progressive loss of urinary solutes, indicating generalized proximal tubule dysfunction, with development of typical swan-neck lesions, tubulointerstitial fibrosis and kidney failure, and decreased survival. The Ctns-/- rats also present crystals in the cornea, and bone and liver defects, as observed in patients. Mechanistically, the loss of cystinosin induces a phenotype switch associating abnormal proliferation and dedifferentiation, loss of apical receptors and transporters, and defective lysosomal activity and autophagy in the cells. Primary cultures of proximal tubule cells derived from the Ctns-/- rat kidneys confirmed the key changes caused by cystine overload, including reduced endocytic uptake, increased proliferation and defective lysosomal dynamics and autophagy. The novel Ctns-/- rat model and derived proximal tubule cell system provide invaluable tools to investigate the pathogenesis of cystinosis and to accelerate drug discovery.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Síndrome de Fanconi , Insuficiência Renal , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Autofagia/genética , Cistina , Cistinose/genética , Cistinose/patologia , Lisossomos/metabolismo , Camundongos , Ratos
3.
Cells ; 11(3)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159136

RESUMO

Epithelial cells that form the kidney proximal tubule (PT) rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients-a key requisite for homeostasis. The endolysosome stands at the crossroads of this sophisticated network, internalizing molecules through endocytosis, sorting receptors and nutrient transporters, maintaining cellular quality control via autophagy, and toggling the balance between PT differentiation and cell proliferation. Dysregulation of such endolysosome-guided trafficking pathways might thus lead to a generalized dysfunction of PT cells, often causing chronic kidney disease and life-threatening complications. In this review, we highlight the biological functions of endolysosome-residing proteins from the perspectives of understanding-and potentially reversing-the pathophysiology of rare inherited diseases affecting the kidney PT. Using cystinosis as a paradigm of endolysosome disease causing PT dysfunction, we discuss how the endolysosome governs the homeostasis of specialized epithelial cells. This review also provides a critical analysis of the molecular mechanisms through which defects in autophagy pathways can contribute to PT dysfunction, and proposes potential interventions for affected tissues. These insights might ultimately accelerate the discovery and development of new therapeutics, not only for cystinosis, but also for other currently intractable endolysosome-related diseases, eventually transforming our ability to regulate homeostasis and health.


Assuntos
Cistinose , Doenças Metabólicas , Autofagia , Cistinose/metabolismo , Ecossistema , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Doenças Metabólicas/metabolismo
4.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884638

RESUMO

Diagnosis and cure for rare diseases represent a great challenge for the scientific community who often comes up against the complexity and heterogeneity of clinical picture associated to a high cost and time-consuming drug development processes. Here we show a drug repurposing strategy applied to nephropathic cystinosis, a rare inherited disorder belonging to the lysosomal storage diseases. This approach consists in combining mechanism-based and cell-based screenings, coupled with an affordable computational analysis, which could result very useful to predict therapeutic responses at both molecular and system levels. Then, we identified potential drugs and metabolic pathways relevant for the pathophysiology of nephropathic cystinosis by comparing gene-expression signature of drugs that share common mechanisms of action or that involve similar pathways with the disease gene-expression signature achieved with RNA-seq.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinose/tratamento farmacológico , Cistinose/genética , Reposicionamento de Medicamentos , Nefropatias/tratamento farmacológico , Nefropatias/genética , Doenças Raras/tratamento farmacológico , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/efeitos da radiação , Células Cultivadas , Biologia Computacional/métodos , Cistinose/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Nefropatias/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Redes e Vias Metabólicas , Doenças Raras/genética , Doenças Raras/metabolismo , Transcriptoma
5.
J Inherit Metab Dis ; 44(6): 1393-1408, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34494673

RESUMO

Cystinosis is an inherited metabolic disorder caused by autosomal recessive mutations in the CTNS gene leading to lysosomal cystine accumulation. The disease primarily affects the kidneys followed by extra-renal organ involvement later in life. Azoospermia is one of the unclarified complications which are not improved by cysteamine, which is the only available disease-modifying treatment. We aimed at unraveling the origin of azoospermia in cysteamine-treated cystinosis by confirming or excluding an obstructive factor, and investigating the effect of cysteamine on fertility in the Ctns-/- mouse model compared with wild type. Azoospermia was present in the vast majority of infantile type cystinosis patients. While spermatogenesis was intact, an enlarged caput epididymis and reduced levels of seminal markers for obstruction neutral α-glucosidase (NAG) and extracellular matrix protein 1 (ECM1) pointed towards an epididymal obstruction. Histopathological examination in human and mouse testis revealed a disturbed blood-testis barrier characterized by an altered zonula occludens-1 (ZO-1) protein expression. Animal studies ruled out a negative effect of cysteamine on fertility, but showed that cystine accumulation in the testis is irresponsive to regular cysteamine treatment. We conclude that the azoospermia in infantile cystinosis is due to an obstruction related to epididymal dysfunction, irrespective of the severity of an evolving primary hypogonadism. Regular cysteamine treatment does not affect fertility but has subtherapeutic effects on cystine accumulation in testis.


Assuntos
Azoospermia/patologia , Barreira Hematotesticular/metabolismo , Cisteamina/uso terapêutico , Cistinose/tratamento farmacológico , Testículo/patologia , Adulto , Animais , Azoospermia/complicações , Azoospermia/genética , Eliminadores de Cistina/uso terapêutico , Cistinose/complicações , Cistinose/patologia , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Estudos Retrospectivos , Adulto Jovem , Proteína da Zônula de Oclusão-1/metabolismo
6.
EMBO Mol Med ; 13(7): e13067, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165243

RESUMO

Nephropathic cystinosis is a severe monogenic kidney disorder caused by mutations in CTNS, encoding the lysosomal transporter cystinosin, resulting in lysosomal cystine accumulation. The sole treatment, cysteamine, slows down the disease progression, but does not correct the established renal proximal tubulopathy. Here, we developed a new therapeutic strategy by applying omics to expand our knowledge on the complexity of the disease and prioritize drug targets in cystinosis. We identified alpha-ketoglutarate as a potential metabolite to bridge cystinosin loss to autophagy, apoptosis and kidney proximal tubule impairment in cystinosis. This insight combined with a drug screen revealed a bicalutamide-cysteamine combination treatment as a novel dual-target pharmacological approach for the phenotypical correction of cystinotic kidney proximal tubule cells, patient-derived kidney tubuloids and cystinotic zebrafish.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Sistemas de Transporte de Aminoácidos Neutros/genética , Anilidas , Animais , Cisteamina , Cistinose/tratamento farmacológico , Humanos , Nitrilas , Fenótipo , Compostos de Tosil , Peixe-Zebra
7.
J Am Soc Nephrol ; 31(7): 1522-1537, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32503896

RESUMO

BACKGROUND: Mutations in the gene that encodes the lysosomal cystine transporter cystinosin cause the lysosomal storage disease cystinosis. Defective cystine transport leads to intralysosomal accumulation and crystallization of cystine. The most severe phenotype, nephropathic cystinosis, manifests during the first months of life, as renal Fanconi syndrome. The cystine-depleting agent cysteamine significantly delays symptoms, but it cannot prevent progression to ESKD and does not treat Fanconi syndrome. This suggests the involvement of pathways in nephropathic cystinosis that are unrelated to lysosomal cystine accumulation. Recent data indicate that one such potential pathway, lysosome-mediated degradation of autophagy cargoes, is compromised in cystinosis. METHODS: To identify drugs that reduce levels of the autophagy-related protein p62/SQSTM1 in cystinotic proximal tubular epithelial cells, we performed a high-throughput screening on the basis of an in-cell ELISA assay. We then tested a promising candidate in cells derived from patients with, and mouse models of, cystinosis, and in preclinical studies in cystinotic zebrafish. RESULTS: Of 46 compounds identified as reducing p62/SQSTM1 levels in cystinotic cells, we selected luteolin on the basis of its efficacy, safety profile, and similarity to genistein, which we previously showed to ameliorate other lysosomal abnormalities of cystinotic cells. Our data show that luteolin improves the autophagy-lysosome degradative pathway, is a powerful antioxidant, and has antiapoptotic properties. Moreover, luteolin stimulates endocytosis and improves the expression of the endocytic receptor megalin. CONCLUSIONS: Our data show that luteolin improves defective pathways of cystinosis and has a good safety profile, and thus has potential as a treatment for nephropathic cystinosis and other renal lysosomal storage diseases.


Assuntos
Antioxidantes/farmacologia , Cistinose/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Luteolina/farmacologia , RNA Mensageiro/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Antioxidantes/efeitos adversos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Cultivadas , Cistinose/metabolismo , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/patologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Luteolina/efeitos adversos , Lisossomos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Peixe-Zebra
8.
J Cell Biol ; 218(3): 783-797, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659099

RESUMO

Phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide with key roles in the Golgi complex, is made by Golgi-associated phosphatidylinositol-4 kinases and consumed by the 4-phosphatase Sac1 that, instead, is an ER membrane protein. Here, we show that the contact sites between the ER and the TGN (ERTGoCS) provide a spatial setting suitable for Sac1 to dephosphorylate PI4P at the TGN. The ERTGoCS, though necessary, are not sufficient for the phosphatase activity of Sac1 on TGN PI4P, since this needs the phosphatidyl-four-phosphate-adaptor-protein-1 (FAPP1). FAPP1 localizes at ERTGoCS, interacts with Sac1, and promotes its in-trans phosphatase activity in vitro. We envision that FAPP1, acting as a PI4P detector and adaptor, positions Sac1 close to TGN domains with elevated PI4P concentrations allowing PI4P consumption. Indeed, FAPP1 depletion induces an increase in TGN PI4P that leads to increased secretion of selected cargoes (e.g., ApoB100), indicating that FAPP1, by controlling PI4P levels, acts as a gatekeeper of Golgi exit.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Células HeLa , Células Hep G2 , Humanos , Proteínas de Membrana/genética , Camundongos , Fosfatos de Fosfatidilinositol/genética
9.
J Cell Biol ; 218(3): 1055-1065, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659100

RESUMO

ER-TGN contact sites (ERTGoCS) have been visualized by electron microscopy, but their location in the crowded perinuclear area has hampered their analysis via optical microscopy as well as their mechanistic study. To overcome these limits we developed a FRET-based approach and screened several candidates to search for molecular determinants of the ERTGoCS. These included the ER membrane proteins VAPA and VAPB and lipid transfer proteins possessing dual (ER and TGN) targeting motifs that have been hypothesized to contribute to the maintenance of ERTGoCS, such as the ceramide transfer protein CERT and several members of the oxysterol binding proteins. We found that VAP proteins, OSBP1, ORP9, and ORP10 are required, with OSBP1 playing a redundant role with ORP9, which does not involve its lipid transfer activity, and ORP10 being required due to its ability to transfer phosphatidylserine to the TGN. Our results indicate that both structural tethers and a proper lipid composition are needed for ERTGoCS integrity.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Lipídeos de Membrana/metabolismo , Receptores de Esteroides/metabolismo , Motivos de Aminoácidos , Transporte Biológico Ativo/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/genética , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Lipídeos de Membrana/genética , Microscopia Eletrônica , Receptores de Esteroides/genética
10.
Pediatr Res ; 81(1-1): 113-119, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27656773

RESUMO

BACKGROUND: Nephropathic cystinosis is a lysosomal storage disease that is caused by mutations in the CTNS gene encoding a cystine/proton symporter cystinosin and an isoform cystinosin-LKG which is generated by an alternative splicing of exon 12. We have investigated the physiological role of the cystinosin-LKG that is widely expressed in epithelial tissues. METHODS: We have analyzed the intracellular localization and the function of the cystinosin-LKG conjugated with DsRed (cystinosin-LKG-RFP) in Madin-Darby canine kidney cells (MDCK II) and in proximal tubular epithelial cells carrying a deletion of the CTNS gene (cystinotic PTEC), respectively. RESULTS: Cystinosin-LKG-RFP colocalized with markers of lysosomes, late endosomes and was also expressed on the apical surface of polarized MDCK II cells. Moreover, immune-electron microscopy images of MDCK II cells overexpressing cystinosin-LKG-RFP showed stacked lamellar membranes inside perinuclear lysosomal structures. To study the role of LKG-isoform, we have investigated cystine accumulation and apoptosis that have been described in cystinotic cells. Cystinosin-LKG decreased cystine levels by approximately 10-fold similarly to cystinosin-RFP. The levels of TNFα- and actinomycin D-inducted apoptosis dropped in cystinotic cells expressing LKG-isoform. This effect was also similar to the main isoform. CONCLUSION: Our results suggest that cystinosin-LKG and cystinosin move similar functional activities in cells.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistina/metabolismo , Cistinose/metabolismo , Cistinose/patologia , Processamento Alternativo , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Apoptose , Células Cultivadas , Cistinose/genética , Cães , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Lisossomos/metabolismo , Células Madin Darby de Rim Canino , Microscopia Eletrônica de Transmissão , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
PLoS One ; 11(5): e0154805, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148969

RESUMO

Cystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport. Deletion of the SSLKG sequence reduced cystinosin-LKG expression in the plasma membrane and cystine transport by approximately 30%, and induced significant accumulation of the protein in the Golgi apparatus and in lysosomes. Cystinosin-LKG, unlike the canonical isoform, also moves to the lysosomes by the indirect pathway, after endocytic retrieval from the plasma membrane, mainly by a clathrin-mediated endocytosis. Nevertheless, silencing of AP-2 triggers the clathrin-independent endocytosis, showing the complex adaptability of cystinosin-LKG trafficking.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Isoformas de Proteínas/metabolismo , Motivos de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/química , Membrana Celular/metabolismo , Humanos , Isoformas de Proteínas/química
12.
Curr Opin Cell Biol ; 35: 43-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25950841

RESUMO

Although they were identified as long ago as the 1960s, there are still many unknowns regarding the functions and composition of membrane contact sites between the endoplasmic reticulum (ER) and the trans-Golgi (TG). While it seems to be fairly well established that they facilitate lipid exchange between the two organelles, much less is known about how they are regulated. A bottleneck in the study of the ER-TG contact sites has been the absence of methods for their biochemical isolation and visualization by light microscopy. Herein we provide an overview of current knowledge about ER-TG contact sites with a particular emphasis on the questions that remain to be explored.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Animais , Transporte Biológico , Membranas Intracelulares/metabolismo , Metabolismo dos Lipídeos , Lipídeos
13.
Biochim Biophys Acta ; 1821(8): 1089-95, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22266015

RESUMO

Next to the protein-based machineries composed of small G-proteins, coat complexes, SNAREs and tethering factors, the lipid-based machineries are emerging as important players in membrane trafficking. As a component of these machineries, lipid transfer proteins have recently attracted the attention of cell biologists for their involvement in trafficking along different segments of the secretory pathway. Among these, the four-phosphate adaptor protein 2 (FAPP2) was discovered as a protein that localizes dynamically with the trans-Golgi network and regulates the transport of proteins from the Golgi complex to the cell surface. Later studies have highlighted a role for FAPP2 as lipid transfer protein involved in glycosphingolipid metabolism at the Golgi complex. Here we discuss the available evidence on the function of FAPP2 in both membrane trafficking and lipid metabolism and propose a mechanism of action of FAPP2 that integrates its activities in membrane trafficking and in lipid transfer. This article is part of a Special Issue entitled Lipids and Vesicular Transport.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glicoesfingolipídeos/metabolismo , Lipídeos/biossíntese , Vesículas Transportadoras/metabolismo , Rede trans-Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Transporte Biológico , Membrana Celular/metabolismo , Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
14.
Traffic ; 12(2): 218-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21062391

RESUMO

In this study, we investigated the mechanisms of sterol transport from the plasma membrane (PM) to the endoplasmic reticulum (ER) and lipid droplets (LDs) in HeLa cells. By overexpressing all mammalian oxysterol-binding protein-related proteins (ORPs), we found that especially ORP1S and ORP2 enhanced PM-to-LD sterol transport. This reflected the stimulation of transport from the PM to the ER, rather than from the ER to LDs. Double knockdown of ORP1S and ORP2 inhibited sterol transport from the PM to the ER and LDs, suggesting a physiological role for these ORPs in the process. A two phenylalanines in an acidic tract (FFAT) motif in ORPs that mediates interaction with VAMP-associated proteins (VAPs) in the ER was not necessary for the enhancement of sterol transport by ORPs. However, VAP-A and VAP-B silencing slowed down PM-to-LD sterol transport. This was accompanied by enhanced degradation of ORP2 and decreased levels of several FFAT motif-containing ORPs, suggesting a role for VAPs in sterol transport by stabilization of ORPs.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos/fisiologia , Receptores de Esteroides/metabolismo , Esteróis/metabolismo , Motivos de Aminoácidos , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Membrana Celular/genética , Colesterol/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Esteroides/genética , Relação Estrutura-Atividade , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...