Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(69): 42147-42156, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516733

RESUMO

Ethylenediaminetetraacetic acid (EDTA) has been widely used as an effective reagent for removal of lead from soil because of its high lead extraction efficiency caused by the high thermodynamic stability of the Pb(ii)-EDTA complex. In this study, EDTA was used as a lixiviant for recovery of lead from residues (matte and slag) of secondary lead smelter plants. The residues were composed mainly of iron (34-66 wt%) and lead (7-11 wt%). Leaching parameters (EDTA concentration, pH, temperature, liquid-to-solid ratio and leaching time) were optimized. The optimum leaching efficiency was achieved when leached for 1 h at room temperature using 0.05 mol L-1 EDTA at a liquid-to-solid ratio of 5 mL g-1. At such conditions, 72 to 80% of lead and less than 1% of iron were leached from both matte and slag. The high selectivity towards lead with minimal co-dissolution of iron is a major advantage since it reduces the chemical consumption and simplifies the downstream processes. Although the stability constants of the complexes Fe(iii)-EDTA, Fe(ii)-EDTA and Pb-EDTA are all large (log K S 25.1, 14.33 and 18.04, respectively), the leaching of iron was most likely limited by its presence in insoluble phases such as iron oxides, sulfides and silicates in the residues. 100% leaching of lead was achieved by a multi-step leaching process where the leaching residues were contacted three times by a fresh EDTA solution. To recover EDTA, first iron was precipitated as iron hydroxide by raising the pH of pregnant leach solution (PLS) above 12.6 using sodium hydroxide, followed by precipitation of lead as lead sulfide by adding ammonium sulfide. The recovered EDTA was successfully reused two times for leaching without significant changes in leaching yields.

3.
RSC Adv ; 8(22): 11886-11893, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35539416

RESUMO

Bauxite residue (BR) contains substantial concentrations of rare-earth elements (REEs), but their recovery is a challenge. Acidic BR leachates typically comprise much higher concentrations of base elements (g L-1) than those of the REEs (ppm). Thus, adsorbents that are highly selective for the REEs over the base elements are required for the separation. The novel supported ionic liquid phase (SILP) betainium sulfonyl(trifluoromethanesulfonylimide) poly(styrene-co-divinylbenzene) [Hbet-STFSI-PS-DVB] was evaluated for the uptake of REEs (Sc, Y, Nd, Dy) in the presence of base elements (Ca, Al, Fe) from BR leachates. Breakthrough curves from acidic nitrate and sulfate media were investigated, as both HNO3 and H2SO4 are commonly used for leaching of BR. The SILP exhibited a superior affinity for REEs in both media, except in the case of Sc(iii) from the sulfate feed. The recovery rates of the trace amounts of REEs from the real nitrate feed were remarkably high (71.7-100%) via a simple chromatography separation, without requiring complexing agents or a pretreatment for the removal of interfering elements. The REEs were purified from the base elements and separated into three sub-groups (scandium, light REEs and heavy REEs) by an optimized elution profile with H3PO4 and HNO3 in a single chromatographic separation step.

4.
RSC Adv ; 8(60): 34754-34763, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35548638

RESUMO

Despite its benefits, the extraction of rare earths (REEs) from chloride solutions with neutral or basic extractants is not efficient, so that separation is currently carried out by using acidic extractants. This work aims to improve this process by replacing the conventional molecular diluents in the organic phase by ionic liquids (ILs) which contain coordinating anions. The extraction of La(iii), Ce(iii) and Pr(iii) from concentrated chloride solutions was tested with a quaternary ammonium and a phosphonium nitrate IL extractant. Dissolution of a trialkylphosphine oxide neutral extractant (Cyanex 923) in the nitrate ILs changed the preference of the organic phase from lighter to heavier REE and increased the overall extraction efficiency and the loading capacity of the organic phase. An increase of the CaCl2 concentration in the feed solution resulted in higher extraction efficiencies, due to a lower activity of water and hence to a poorer hydration of the REE ions. In that respect, chloride ions were not coordinating to the REE ion after extraction from concentrated chloride solutions. To achieve selectivity, one should fine-tune the loading by varying the CaCl2 and/or Cyanex 923 concentrations. Adjustment of the CaCl2 concentration in the feed and stripping solutions is essential for the separation of mixtures of REE. However, and unlike in the case of acidic extractants, no control of equilibrium pH is required. The split-anion extraction offers the possibility to separate mixtures of REEs in different groups without having to change the chloride feed solution. It leads to safer and environmentally friendlier extraction processes by (1) using solvents that are not volatile, not flammable and do no accumulate static electricity, (2) consuming no acids or alkali, (3) easy stripping with water and (4) avoidance to create nitrate-containing effluents.

5.
Anal Chem ; 89(8): 4595-4603, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28345877

RESUMO

Total reflection X-ray fluorescence (TXRF) is becoming more and more popular for elemental analysis in academia and industry. However, simplification of the procedures for analyzing samples with complex compositions and residual matrix effects is still needed. In this work, the effect of an inorganic (CaCl2) and an organic (tetraalkylphosphonium chloride) matrix on metals quantification by TXRF was investigated for liquid samples. The samples were spiked with up to 20 metals at concentrations ranging from 3 to 50 mg L-1 per element, including elements with spectral peaks near the peaks of the matrix elements or near the Raleigh and Compton scattering peaks of the X-ray source (molybdenum anode). The recovery rate (RR) and the relative standard deviation (RSD) were calculated to express the accuracy and the precision of the measured element concentrations. In samples with no matrix effects, good RRs are obtained regardless of the internal standard selected. However, in samples with moderate matrix content, the use of an optimum internal standard (OIS) at a concentration close to that of the analyte significantly improved the quantitative analysis. In samples with high concentrations of inorganic ions, using a Triton X-100 aqueous solution to dilute the sample during the internal standardization resulted in better RRs and lower RSDs compared to using only water. In samples with a high concentration of organic material, pure ethanol gave slightly better results than when a Triton X-100-ethanol solution was used for dilution. Compared to previous methods reported in the literature, the new sample-preparation method gave better accuracy, precision, and sensitivity for the elements tested. Sample dilution with an OIS and the surfactant Triton X-100 (inorganic media) or ethanol (organic media) is recommended for fast routine elemental determination in matrix containing samples, as it does not require special equipment, experimentally derived case-dependent mathematical corrections, or physicochemical removal of interfering elements.

6.
Waste Manag ; 46: 408-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26320817

RESUMO

The performance of a widely distributed natural clay to attenuate contaminants released from an old landfill was investigated. The objective is to evaluate its potential use as a barrier for waste containment systems. Core samples of the natural clay were collected below the landfill and their parameters distribution with depth was determined. Partition coefficients, retardation factors and percentage values of pollutants concentrations, revealed a rapid decrease of contaminants with depth. The background values of the pollutants were below the maximum limits for drinking and irrigation water and with no need of reactors, collectors, aeration or recirculation systems. Impermeable waste capping is discouraged in order to decrease leachate toxicity, decomposition time and conservative species, and in order to avoid high-reducing conditions that would mobilize redox-sensitive contaminants. A review on leachate-composition evolution and on natural-attenuation processes was undertaken to understand the interactions leachate-substratum, which is essential to properly estimate the leachate transport and implement the attenuation strategy. This strategy complements the traditional containment one regarding (1) the susceptibility of engineering liners to fail, (2) the inevitable diffusion of contaminants through them, (3) the remaining high number of old landfills before the requirements of liner systems and (4) the low-cost and feasibility for developing countries.


Assuntos
Silicatos de Alumínio/análise , Poluição Ambiental/prevenção & controle , Instalações de Eliminação de Resíduos , Gerenciamento de Resíduos/métodos , Poluição Química da Água/prevenção & controle , Argila , Poluição Ambiental/economia , Espanha , Gerenciamento de Resíduos/economia , Poluição Química da Água/economia
7.
Sci Total Environ ; 419: 81-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22285080

RESUMO

Enhanced sand-clay mixtures have been prepared by using a sandstone arkosic material and have been evaluated for consideration as landfill liners. A lab-scale test was carried out under controlled conditions with different amended natural sandstones whereby leachate was passed through the compacted mixtures. The compacted samples consisted of siliceous sand (quartz-feldspar sand separated from the arkose sandstone) and clay (purified clay from arkose sandstone and two commercial bentonites) materials that were mixed in different proportions. The separation of mineral materials from a common and abundant natural source, for soil protection purposes, is proposed as an economic and environmentally efficient practice. The liner qualities were compared for their mineralogical, physicochemical and major ions transport and adsorption properties. Although all samples fulfilled hydraulic conductivity requirements, the addition of bentonite to arkose sandstone was determined to be an effective strategy to decrease the permeability of the soil and to improve the pollutants retention. The clay materials from arkose sandstone also contributed to pollutant retention by a significant improvement of the cation exchange capacity of the bulk material. However, the mixtures prepared with clay materials from the arkose, exhibited a slight increase of hydraulic conductivity. This effect has to be further evaluated.


Assuntos
Bentonita/química , Compostos de Amônio Quaternário/química , Eliminação de Resíduos/métodos , Dióxido de Silício/química , Poluentes Químicos da Água/análise , Poluição da Água/prevenção & controle , Adsorção , Difusão , Permeabilidade , Compostos de Amônio Quaternário/análise
8.
J Environ Manage ; 95 Suppl: S175-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21420226

RESUMO

In this paper, the diffusion of solutes in natural clay from a concentrated solution consisting primarily of ammonium, sodium and chloride ions at a pH level of 8 was studied and was based on an existing 20-year-old landfill. Contaminant transport through clay liners was predicted using transport and reaction geochemical codes to help explain the experimental data. The model predicted the chloride anion diffusion and cation exchange processes for three different experiments: (1) small-scale interactions in compacted clay, (2) 1:1 European Union (EU) Directive demonstration experiments (0.5-m-thick clay barrier), and (3) analysis of a bore hole with core recovery drilled in an old landfill located above a similar type of clay as that studied in (1) and (2). Orders of magnitude between 10(-10) and 10(-9) m(2) s(-1) were used for the apparent diffusion coefficient to fit the chloride profiles at the different scales; however, at larger space and time scales, diffusion was retarded due to the presence of more consolidated, non-mechanically disturbed clay materials at large depths in a natural clay-rock emplacement.


Assuntos
Silicatos de Alumínio , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/química , Cloretos/química , Argila , Difusão , União Europeia , Guias como Assunto , Concentração de Íons de Hidrogênio , Modelos Teóricos , Compostos de Amônio Quaternário/química , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...