Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(46): 11438-11443, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34792356

RESUMO

We report photoelectron circular dichroism of S-(+)-fenchone enantiomers recorded with state-state vibrational level resolution using picosecond laser (2 + 1) resonance enhanced multiphoton ionization via 3s and 3p Rydberg intermediate states. The 3p state decays to the 3s state on a picosecond time scale so that, above the 3p Rydberg excitation threshold, ionization of vibrationally hot 3s states competes with direct 3p-1 ionization. Complex vibronic dynamics of the 3p → 3s internal conversion weaken the Rydberg Δv = 0 propensity rule in both the 3p-1 and 3s-1 ionization channels. Large variations of the forward-backward chiral asymmetry factors are observed between the Δv = 0 and Δv > 0 vibrational transitions, including dramatic swings from up to ±17%. Such changes of sign indicate complete reversal of the preferred direction for photoelectron emission in the laboratory frame, associated with vibrational motion. These asymmetry switches easily exceed the amplitude and frequency of such vibrationally induced flips previously observed in single photon ionization.

2.
J Chem Phys ; 149(9): 094301, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195314

RESUMO

The vibrations of the ground state cation ( X̃2B2g) of para-difluorobenzene (pDFB) have been investigated using zero-electron-kinetic-energy (ZEKE) spectroscopy. A comprehensive set of ZEKE spectra were recorded via different vibrational levels of the S1 state (<00 + 1300 cm-1). The adiabatic ionization energy for pDFB was measured as 73 869 ± 5 cm-1. Use of different intermediate levels allows different cationic vibrational activity to be obtained via the modification of the Franck-Condon factors for the ionization step, allowing the wavenumbers of different vibrational levels in the cation to be established. In addition, assignment of the vibrational structure in the ZEKE spectra allowed interrogation of the assignments of the S1 ← S0 transition put forward by Knight and Kable [J. Chem. Phys. 89, 7139 (1988)]. Assignment of the vibrational structure has been aided by quantum chemical calculations. In this way, it was possible to assign seventeen of the thirty vibrational modes of the ground state pDFB+ cation. Evidence for complex Fermi resonances in the S1 state, i.e., those that involve more than two vibrations, was established. One of these was investigated using picosecond time-resolved photoelectron spectroscopy. In addition, we discuss the appearance of several symmetry-forbidden bands in the ZEKE spectra, attributing their appearance to a Rydberg state variation of an intrachannel vibronic coupling mechanism.

3.
Philos Trans A Math Phys Eng Sci ; 376(2115)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29431684

RESUMO

A rationale for creating highly aligned distributions of molecules is that it enables vector properties referenced to molecule-fixed axes (the molecular frame) to be determined. In the present work, the degree of alignment that is necessary for this to be achieved in practice is explored. Alignment is commonly parametrized in experiments by a single parameter, [Formula: see text], which is insufficient to enable predictive calculations to be performed. Here, it is shown that, if the full distribution of molecular axes takes a Gaussian form, this single parameter can be used to determine the complete set of alignment moments needed to characterize the distribution. In order to demonstrate the degree of alignment that is required to approach the molecular frame, the alignment moments corresponding to a few chosen values of [Formula: see text] are used to project a model molecular frame photoelectron angular distribution into the laboratory frame. These calculations show that [Formula: see text] needs to approach 0.9 in order to avoid significant blurring to be caused by averaging.This article is part of the theme issue 'Modern theoretical chemistry'.

4.
Phys Chem Chem Phys ; 19(7): 5051-5062, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28168246

RESUMO

We have studied the intramolecular dynamics induced by selective photoexcitation of two near-isoenergetic vibrational states in S1p-fluorotoluene using picosecond time-resolved photoelectron imaging. We find that similar dynamics ensue following the preparation of the 13111 and 7a111 states that lie at 1990 cm-1 and 2026 cm-1, and that these dynamics are mediated by a single strongly coupled doorway state in each case. However, the lifetimes differ by a factor of three, suggesting an influence of the vibrational character of the modes involved. Our results clearly show the contribution of torsion-vibration coupling to the dynamics; this is further corroborated by comparison with the 7a111 state in S1p-difluorobenzene, which lies at 2068 cm-1. We invoke a model in which van der Waals interactions between methyl hydrogen atoms and nearby ring carbon and hydrogen atoms leads to mixing of the vibrational and torsional states. This model predicts that enhanced torsion-vibration coupling occurs when mode 7a is excited, consistent with our observations.

5.
J Chem Phys ; 140(11): 114308, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24655181

RESUMO

We report (nanosecond) resonance-enhanced multiphoton ionization (REMPI), (nanosecond) zero-kinetic-energy (ZEKE) and (picosecond) time-resolved slow-electron velocity map imaging (tr-SEVI) spectra of fully hydrogenated toluene (Tol-h8) and the deuterated-methyl group isotopologue (α3-Tol-d3). Vibrational assignments are made making use of the activity observed in the ZEKE and tr-SEVI spectra, together with the results from quantum chemical and previous experimental results. Here, we examine the 700-1500 cm(-1) region of the REMPI spectrum, extending our previous work on the region ≤700 cm(-1). We provide assignments for the majority of the S1 and cation bands observed, and in particular we gain insight regarding a number of regions where vibrations are coupled via Fermi resonance. We also gain insight into intramolecular vibrational redistribution in this molecule.

6.
Phys Chem Chem Phys ; 16(2): 430-43, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24045323

RESUMO

The intramolecular vibrational redistribution (IVR) dynamics following the excitation of a mode in the first electronically excited states of toluene, toluene-d3 and p-fluorotoluene that has predominantly C-CH3 stretching character and an internal energy of ~1200 cm(-1) have been compared using picosecond time-resolved photoelectron imaging spectroscopy as a probe. Temporal changes in the intensities of spectral features in each molecule have enabled IVR lifetimes of 12, 15 and 50 ps, respectively, to be determined. Our measurements show that doorway states are critical in mediating the IVR dynamics in toluene and toluene-d3, and we deduce that these doorway states, which are assigned in the course of this work, are also instrumental in reducing the IVR lifetimes of these molecules relative to p-fluorotoluene.

7.
J Phys Chem Lett ; 5(14): 2484-7, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26277820

RESUMO

Using picosecond time-resolved photoelectron imaging, we have studied the intramolecular vibrational energy redistribution (IVR) dynamics that occur following the excitation of the 3(1)5(1) level, which lies 2068 cm(-1) above the S1 origin in p-difluorobenzene. Our technique, which has superior time resolution to that of earlier studies but retains sufficient energy resolution to identify the behavior of individual vibrational states, enables us to determine six distinct beating periods in photoelectron intensity, only one of which has been observed previously. Analysis shows that the IVR dynamics are restricted among only a handful of vibrational levels, despite the relatively high excitation energy. This is deduced to be a consequence of the high symmetry and rigid structure of p-difluorobenzene.

9.
J Chem Phys ; 139(6): 064304, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23947852

RESUMO

We present new evidence for the existence of a near threshold π* shape resonance as a common feature in the photoionization of each isomer of difluorobenzene. Experimentally, this is revealed by significant changes in the anisotropy of the photoelectron angular distributions (PADs) following the ionization of the optically aligned S1 state of these molecules at varying photon energies. Continuum multiple scattering Xα calculations reproduce this behaviour well, and allow the visualisation of the continuum shape resonances. The resonances are unusually narrow in energy (<1 eV), but nevertheless appear to extend right down to the ionization thresholds--exactly the low energy range typically accessed in laser-based resonance enhanced multiphoton ionization (REMPI) schemes. The anticipation of such pronounced energy dependence in the PADs and cross-sections sought for other molecules, and an ability to accurately predict such features, should be important for the reliable application and interpretation of experiments involving REMPI probing of those molecules.

10.
Phys Rev Lett ; 109(19): 193004, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23215380

RESUMO

We measure quantum beating patterns of photoelectron intensity caused by intramolecular vibrational energy redistribution following the excitation of a low-lying ring breathing state in S(1) parafluorotoluene. Analysis of the beating patterns reveals an exceptional sensitivity to details of the evolving wave packet which is found to contain two incoherent components, one of which rapidly dephases. This analysis enables the determination of coupling matrix elements, which are shown to depend strongly on torsional and rotational quantum numbers.

11.
J Chem Phys ; 135(12): 124305, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21974520

RESUMO

Picosecond time-resolved photoelectron spectroscopy is used to investigate intramolecular vibrational redistribution (IVR) following excitation of S(1) 18a(1) in p-fluorotoluene (pFT) at an internal energy of 845 cm(-1), where ν(18a) is a ring bending vibrational mode. Characteristic oscillations with periods of 8 ps and 5 ps are observed in the photoelectron signal and attributed to coupling between the initially excited zero-order bright state and two doorway states. Values for the coupling coefficients connecting these three vibrational states have been determined. In addition, an exponential change in photoelectron signal with a lifetime of 17 ps is attributed to weaker couplings with a bath of dark states that play a more significant role during the latter stages of IVR. A tier model has been used to assign the most strongly coupled doorway state to S(1) 17a(1) 6a(2)('), where ν(17a) is a CH out-of-plane vibrational mode and 6a(2)(') is a methyl torsional level. This assignment signifies that a torsion-vibration coupling mechanism mediates the observed dynamics, thus demonstrating the important role played by the methyl torsional mode in accelerating IVR.


Assuntos
Teoria Quântica , Tolueno/química , Espectroscopia Fotoeletrônica , Fatores de Tempo , Tolueno/análogos & derivados , Vibração
12.
J Phys Chem A ; 114(42): 11330-6, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20795689

RESUMO

In this article we present photoelectron spectra and angular distributions in which ion rotational states are resolved. This data enables the comparison of direct and threshold photoionization techniques. We also present angle-resolved photoelectron signals at different total energies, providing a method to scan the structure of the continuum in the near-threshold region. Finally, we have studied the influence of vibrational excitation on the photoionization dynamics.


Assuntos
Amônia/química , Simulação de Dinâmica Molecular , Fótons , Teoria Quântica , Fotoquímica , Vibração
13.
Phys Chem Chem Phys ; 12(33): 9872-83, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20607164

RESUMO

The 6a(1) + 10b(1)16b(1) Fermi resonance in S(1) toluene is studied through picosecond time-resolved photoelectron spectroscopy. Our time and energy resolution, together with the necessary stability to monitor dynamics for many hundreds of picoseconds, enable new and unexpected insight into the dynamics and identity of the prepared wavepacket, and the determination of the coupling matrix elements responsible for those dynamics. In particular we are able to determine the influence of the torsional motion of the methyl group on the dynamics; this motion has long been implicated as an effective accelerator of IVR processes.

14.
Phys Rev Lett ; 102(25): 253002, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19659072

RESUMO

We present, for the first time, rotationally resolved photoelectron images resulting from the ionization of a polyatomic molecule. Photoelectron angular distributions pertaining to the formation of individual rotational levels of NH3+ have been extracted from the images and analyzed to enable a complete determination of the radial dipole matrix elements and relative phases that describe the ionization dynamics. This determination leads to the deduction of significantly different dynamics from those extracted in previous studies which lacked either angular information or rotational resolution.

15.
Phys Chem Chem Phys ; 10(45): 6762-9, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19015779

RESUMO

Slow electron velocity map imaging provides a means of performing relatively high resolution photoelectron spectroscopy while still maintaining many of the advantages of imaging techniques. Here, we describe its application to the spectroscopy and dynamics of some substituted toluene molecules and show it to be a versatile technique whose resolution can approach that of zero kinetic energy (ZEKE) photoelectron spectroscopy, and provides a good match to the bandwidth of transform limited 1 ps laser pulses. We provide a series of comparisons of the results obtained with different ionizing wavelengths and use these to help understand the advantages and limitations of the technique.

16.
J Chem Phys ; 127(15): 154307, 2007 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17949149

RESUMO

Angle-resolved photoelectron spectra from rotationally selected A1Au state acetylene have been recorded using velocity-map imaging. Several Renner-Teller split vibrational bands have been observed and assigned, showing good agreement with previous zero kinetic energy photoelectron (ZEKE) work [S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, J. Chem. Phys. 99, 6233 (1993); S.-J. Tang, Y.-C. Chou, J. J.-M. Lin, and Y.-C. Hsu, ibid. 125, 133201 (2006).] The extracted photoelectron angular distributions (PADs) corresponding to these bands show a strong dependence on the vibronic angular momentum projection quantum number K+. Subbands with odd K+ show PADs with maximum intensity along the polarization vector of the ionizing laser beam, while those with even K+ show PADs with maximum intensity perpendicular to this direction. Velocity-map images recorded at low photoelectron energies approach rotational resolution of the ion, and the evolution of the PADs with increasing rotational level prepared in the A1Au state indicates the potential of a "complete" determination of the photoionization dynamics of the A1Au state. This is further investigated in the following paper.

17.
J Chem Phys ; 127(15): 154308, 2007 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17949150

RESUMO

We present a fit to photoelectron angular distributions (PADs) measured following the photoionization of rotationally selected A1Au state acetylene. In the case of the 4(1)2Sigmau- vibronic state of the ion, we are able to use this fit to make a complete determination of the radial dipole matrix elements and phases connecting the prepared level to each photoelectron partial wave. We have also investigated other Renner-Teller subbands with a view to disentangling geometrical and dynamical contributions to the resulting PADs.

18.
J Chem Phys ; 125(12): 124308, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17014175

RESUMO

We employ zero-kinetic-energy (ZEKE) photoelectron spectroscopy with nanosecond laser pulses to study intramolecular vibrational redistribution (IVR) in S(1) para-fluorotoluene. The frequency resolution of the probe step is superior to that obtained in any studies on this molecule to date. We focus on the behavior of the 13(1) (C-CH(3) stretch) and 7a(1) (C-F stretch) vibrational states whose dynamics have previously received significant attention, but with contradictory results. We show conclusively that, under our experimental conditions, the 7a(1) vibrational state undergoes significantly more efficient IVR than does the 13(1) state. Indeed, under the experimental conditions used here, the 13(1) state undergoes very little IVR. These two states are especially interesting because their energies are only 36 cm(-1) apart, and the two vibrational modes have the same symmetry. We discuss the role of experimental conditions in observations of IVR in some detail, and thereby suggest explanations for the discrepancies reported to date.

19.
J Chem Phys ; 124(20): 201102, 2006 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-16774305

RESUMO

We have prepared a coherent superposition of the two components of a Fermi resonance in the S1 state of toluene at approximately 460 cm(-1) with a approximately 1 ps laser pulse and monitored time-resolved photoelectron velocity-map images. The photoelectron intensities oscillate with time in a manner that depends on their kinetic energy, even though full vibrational resolution in the cation is not achieved. Analysis of the time-dependent photoelectron spectra enables information on the composition of the S1 wavepacket to be deduced. Such an experiment, in which a whole set of partially dispersed cation vibrational states are detected simultaneously, suggests an efficient method of studying intramolecular vibrational energy redistribution processes in excited states.

20.
J Chem Phys ; 123(20): 204316, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16351265

RESUMO

Laser photoelectron spectra have been obtained following the preparation of eight vibrational states in S(1) toluene. For four of the vibrational states (up to approximately 550 cm(-1) excess energy) excitation and ionization with nanosecond laser pulses give rise to photoelectron spectra with well-resolved vibrational peaks. For the other states (>750 cm(-1) excess energy) the photoelectron spectra show a loss of structure when nanosecond pulses are used, as a result of intramolecular dynamics [see Whiteside et al., J. Chem. Phys. 123, 204317 (2005), following paper]. A number of vibrational peaks in the photoelectron spectra are assigned, and we find that the common series of ion vibrational peaks observed following the ionization of p-fluorotoluene in various S(1) vibrational states is not reproduced in toluene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...