Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(11): e23218, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779443

RESUMO

Psychological stress and traumatic brain injury (TBI) result in long-lasting emotional and behavioral impairments in patients. So far, the interaction of psychological stress with TBI not only in the brain but also in peripheral organs is poorly understood. Herein, the impact of acute stress (AS) occurring immediately before TBI is investigated. For this, a mouse model of restraint stress and TBI was employed, and their influence on behavior and gene expression in brain regions, the hypothalamic-pituitary-adrenal (HPA) axis, and peripheral organs was analyzed. Results demonstrate that, compared to single AS or TBI exposure, mice treated with AS prior to TBI showed sex-specific alterations in body weight, memory function, and locomotion. The induction of immediate early genes (IEGs, e.g., c-Fos) by TBI was modulated by previous AS in several brain regions. Furthermore, IEG upregulation along the HPA axis (e.g., pituitary, adrenal glands) and other peripheral organs (e.g., heart) was modulated by AS-TBI interaction. Proteomics of plasma samples revealed proteins potentially mediating this interaction. Finally, the deletion of Atf3 diminished the TBI-induced induction of IEGs in peripheral organs but left them largely unaltered in the brain. In summary, AS immediately before brain injury affects the brain and, to a strong degree, also responses in peripheral organs.


Assuntos
Lesões Encefálicas Traumáticas , Sistema Hipotálamo-Hipofisário , Humanos , Masculino , Feminino , Camundongos , Animais , Sistema Hipófise-Suprarrenal , Lesões Encefálicas Traumáticas/metabolismo , Hipófise/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Expressão Gênica
2.
Acta Neuropathol ; 145(6): 773-791, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058170

RESUMO

Amyotrophic lateral sclerosis (ALS) is associated with impaired energy metabolism, including weight loss and decreased appetite which are negatively correlated with survival. Neural mechanisms underlying metabolic impairment in ALS remain unknown. ALS patients and presymptomatic gene carriers have early hypothalamic atrophy. The lateral hypothalamic area (LHA) controls metabolic homeostasis through the secretion of neuropeptides such as orexin/hypocretin and melanin-concentrating hormone (MCH). Here, we show loss of MCH-positive neurons in three mouse models of ALS based on SOD1 or FUS mutations. Supplementation with MCH (1.2 µg/d) through continuous intracerebroventricular delivery led to weight gain in male mutant Sod1G86R mice. MCH supplementation increased food intake, rescued expression of the key appetite-related neuropeptide AgRP (agouti-related protein) and modified respiratory exchange ratio, suggesting increased carbohydrate usage during the inactive phase. Importantly, we document pTDP-43 pathology and neurodegeneration in the LHA of sporadic ALS patients. Neuronal cell loss was associated with pTDP-43-positive inclusions and signs of neurodegeneration in MCH-positive neurons. These results suggest that hypothalamic MCH is lost in ALS and contributes to the metabolic changes, including weight loss and decreased appetite.


Assuntos
Esclerose Lateral Amiotrófica , Neuropeptídeos , Masculino , Camundongos , Animais , Superóxido Dismutase-1 , Neuropeptídeos/metabolismo , Orexinas , Ingestão de Alimentos , Redução de Peso
3.
Acta Neuropathol Commun ; 6(1): 128, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470258

RESUMO

White matter lesions (WMLs) are a common manifestation of small vessel disease (SVD) in the elderly population. They are associated with an enhanced risk of developing gait abnormalities, poor executive function, dementia, and stroke with high mortality. Hypoperfusion and the resulting endothelial damage are thought to contribute to the development of WMLs. The focus of the present study was the analysis of the microvascular bed in SVD patients with deep WMLs (DWMLs) by using double- and triple-label immunohistochemistry and immunofluorescence. Simultaneous visualization of collagen IV (COLL4)-positive membranes and the endothelial glycocalyx in thick sections allowed us to identify endothelial recession in different types of string vessels, and two new forms of small vessel/capillary pathology, which we called vascular bagging and ghost string vessels. Vascular bags were pouches and tubes that were attached to vessel walls and were formed by multiple layers of COLL4-positive membranes. Vascular bagging was most severe in the DWMLs of cases with pure SVD (no additional vascular brain injury, VBI). Quantification of vascular bagging, string vessels, and the density/size of CD68-positive cells further showed widespread pathological changes in the frontoparietal and/or temporal white matter in SVD, including pure SVD and SVD with VBI, as well as a significant effect of the covariate age. Plasma protein leakage into vascular bags and the white matter parenchyma pointed to endothelial damage and basement membrane permeability. Hypertrophic IBA1-positive microglial cells and CD68-positive macrophages were found in white matter areas covered with networks of ghost vessels in SVD, suggesting phagocytosis of remnants of string vessels. However, the overall vessel density was not altered in our SVD cohort, which might result from continuous replacement of vessels. Our findings support the view that SVD is a progressive and generalized disease process, in which endothelial damage and vascular bagging drive remodeling of the microvasculature.


Assuntos
Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/patologia , Células Endoteliais/patologia , Leucoencefalopatias/complicações , Leucoencefalopatias/patologia , Microvasos/patologia , Idoso , Análise de Variância , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Colagenases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Masculino , Proteínas dos Microfilamentos , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Lectinas de Plantas/metabolismo
4.
Cancer Lett ; 380(2): 375-383, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422542

RESUMO

Regardless of the etiological factor, an aberrant morphology is the common hallmark of ductal carcinoma in situ (DCIS), which is a highly heterogeneous disease. To test if critical core morphogenetic mechanisms are compromised by different mutations, we performed proteomics analysis of five mammary epithelial HME1 mutant lines that develop a DCIS-like morphology in three dimensional (3D) culture. Here we show first, that all HME1 mutant lines share a common protein signature highlighting an inverse deregulation of two annexins, ANXA2 and ANXA8. Either ANXA2 downregulation or ANXA8 upregulation in the HME1 cell context are per se sufficient to confer a 3D DCIS-like morphology. Seemingly, different mutations impinged on a common mechanism that differentially regulates the two annexins. Second, we show that ANXA8 expression is significantly higher in DCIS tissue samples versus normal breast tissue and atypical ductal hyperplasia (ADH). Apparently, ANXA8 expression is significantly more upregulated in ER-negative versus ER-positive cases, and significantly correlates with tumor stage, grade and positive lymph node. Based on our study, 3D mammary morphogenesis models can be an alternate/complementary strategy for unraveling new DCIS mechanisms and biomarkers.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Morfogênese , Anexina A2/genética , Anexina A2/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Técnicas de Cultura de Células , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Metástase Linfática , Glândulas Mamárias Humanas/patologia , Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Fenótipo , Proteômica/métodos , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...