Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 261: 116457, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850733

RESUMO

Degradation of ionizable lipids in mRNA-based vaccines was recently found to deactivate the payload, demanding rigorous monitoring of impurities in lipid nanoparticle (LNP) formulations. However, parallel screening for lipid degradation in customized delivery systems for next-generation therapeutics maintains a challenging and unsolved problem. Here, we describe a nanopore electrochemical sensor to detect ppb-levels of aldehydes arising from lipid degradation in LNP formulations that can be deployed in massively parallel fashion. Specifically, we combine nanopore electrodes with a block copolymer (BCP) membrane capable of hydrophobic gating of analyte transport between the bulk solution and the nanopore volume. By incorporating aldehyde dehydrogenase (ALDH), enzymatic oxidation of aldehydes generates NADH to enable ultrasensitive voltammetric detection with limits-of-detection (LOD) down to 1.2 ppb. Sensor utility was demonstrated by detecting degradation of N-oxidized SM-102, the ionizable lipid in Moderna's SpikeVax™ vaccine, in mRNA-1273 LNP formulation. This work should be of significant use in the pharmaceutical industry, paving the way for automated on-line quality assessments of next-generation therapeutics.


Assuntos
Aldeídos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanopartículas , Nanoporos , Técnicas Biossensoriais/métodos , Aldeídos/química , Nanopartículas/química , Técnicas Eletroquímicas/métodos , Lipídeos/química , Limite de Detecção , Aldeído Desidrogenase/química , Lipossomos
2.
Small ; 20(5): e2304966, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752777

RESUMO

The advent of 3D printing has facilitated the rapid fabrication of microfluidic devices that are accessible and cost-effective. However, it remains a challenge to fabricate sophisticated microfluidic devices with integrated structural and functional components due to limited material options of existing printing methods and their stringent requirement on feedstock material properties. Here, a multi-materials multi-scale hybrid printing method that enables seamless integration of a broad range of structural and functional materials into complex devices is reported. A fully printed and assembly-free microfluidic biosensor with embedded fluidic channels and functionalized electrodes at sub-100 µm spatial resolution for the amperometric sensing of lactate in sweat is demonstrated. The sensors present a sensitive response with a limit of detection of 442 nm and a linear dynamic range of 1-10 mm, which are performance characteristics relevant to physiological levels of lactate in sweat. The versatile hybrid printing method offers a new pathway toward facile fabrication of next-generation integrated devices for broad applications in point-of-care health monitoring and sensing.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Microfluídica , Técnicas Biossensoriais/métodos , Impressão Tridimensional , Lactatos
3.
ACS Appl Mater Interfaces ; 15(33): 39707-39715, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37579252

RESUMO

Hydrophobic gating in biological transport proteins is regulated by stimulus-specific switching between filled and empty nanocavities, endowing them with selective mass transport capabilities. Inspired by these, solid-state nanochannels have been integrated into functional materials for a broad range of applications, such as energy conversion, filtration, and nanoelectronics, and here we extend these to electrochemical biosensors coupled to mass transport control elements. Specifically, we report hierarchically organized structures with block copolymers on tyrosinase-modified two-electrode nanopore electrode arrays (BCP@NEAs) as stimulus-controlled electrochemical biosensors for alkylphenols. A polystyrene-b-poly(4-vinyl)pyridine (PS-b-P4VP) membrane placed atop the NEA endows the system with potential-responsive gating properties, where water transport is spatially and temporarily gated through hydrophobic P4VP nanochannels by the application of appropriate potentials. The reversibility of hydrophobic voltage-gating makes it possible to capture and confine analyte species in the attoliter-volume vestibule of cylindrical nanopore electrodes, enabling redox cycling and yielding enhanced currents with amplification factors >100× when operated in a generator-collector mode. The enzyme-coupled sensing capabilities are demonstrated using nonelectroactive 4-ethyl phenol, exploiting the tyrosinase-catalyzed turnover into reversibly redox-active quinones, then using the quinone-catechol redox reaction to achieve ultrasensitive cycling currents in confined BCP@NEA sensors giving a limit-of-detection of ∼120 nM. The mass transport controlled sensing platform described here is relevant to the development of enzyme-coupled multiplex biosensors for sensitive and selective detection of biomarkers and metabolites in next-generation point-of-care devices.


Assuntos
Técnicas Biossensoriais , Nanoporos , Monofenol Mono-Oxigenase , Eletrodos , Oxirredução , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...