RESUMO
Zelkova abelicea is an endemic tree growing only on eight mountain stands on the Greek island of Crete. The aim of this study was to determine the structure of the assemblages and analyze the diversity of the arachnid assemblages living on Zelkova abelicea, an endemic tree species in Crete. Material for the analyses was collected from tree trunks, oftentimes covered by bryophytes or lichens. In the examined material, 85 taxa were recorded. The most numerous groups represented in the analyzed material were Acari, including representatives of the orders Mesostigmata (78 ind. of 18 spp.) and Oribatida (1056 ind. of 51 spp.). In the order Mesostigmata the species represented by the highest numbers of specimens were Onchodellus karawaiewi (15 individuals) and Hypoaspisella sp. (13), which is probably a species new to science. In turn, representatives of the order Oribatida were much more numerous, with Zygoribatula exilis (284) and Eremaeus tuberosus (210) being identified in the largest numbers. Among the eight sampled localities, Gerakari (646 ind. and 50 spp.) and Omalos (409 ind. and 43 spp., respectively) had by far the richest assemblages. Statistical analyses confirmed the highly diverse character of the arachnid assemblages at the individual sites, which is a consequence not only of the varied numbers of arachnids found, but also of the presence of very rare species, such as Androlaelaps shealsi, Cosmolaelaps lutegiensis or Hoploseius oblongus. These results highlight the high species diversity of the arachnids found on Z. abelicea but also suggest the lack of connectivity between the isolated and fragmented forest stands on Crete.
RESUMO
Contarinia ampelitsiae n. sp. Dorchin & Fazan is described as a newly discovered gall-midge species (Diptera: Cecidoymiidae) forming galls in flowers of Zelkova abelicea (Ulmaceae), a tree species endemic to the Mediterranean island of Crete (Greece). Larvae develop within modified filaments of male flowers, contrary to many Contarinia species that develop freely in flowers or in simple flower galls. The species has one generation per year, and its galls are sometimes found in great numbers on individual trees, thus affecting both fruit quantity and weight. This is the first report of a gall midge from Zelkova and the first record of Contarinia from Ulmaceae. Based on its host-plant association and on the barcoding section of the mtCOI gene, this species has no obvious relatives within Contarinia.
Assuntos
Dípteros , Animais , Árvores , Grécia , Ulmaceae , Nematóceros , FloresRESUMO
Pollen identification is an important task for the botanical certification of honey. It is performed via thorough microscopic examination of the pollen present in honey; a process called melissopalynology. However, manual examination of the images is hard, time-consuming and subject to inter- and intra-observer variability. In this study, we investigated the applicability of deep learning models for the classification of pollen-grain images into 20 pollen types, based on the Cretan Pollen Dataset. In particular, we applied transfer and ensemble learning methods to achieve an accuracy of 97.5%, a sensitivity of 96.9%, a precision of 97%, an F1 score of 96.89% and an AUC of 0.9995. However, in a preliminary case study, when we applied the best-performing model on honey-based pollen-grain images, we found that it performed poorly; only 0.02 better than random guessing (i.e., an AUC of 0.52). This indicates that the model should be further fine-tuned on honey-based pollen-grain images to increase its effectiveness on such data.
RESUMO
Pine honey is a honeydew honey produced in the East Mediterranean region (Greece and Turkey) from the secretions of the plant sucking insect Marchalina hellenica (Gennadius) (Coccoidea: Marchalini-dae) feeding on living parts of Pinus species. Nowadays, honeydew honey has attracted great attention due to its biological activities. The aim of this study was to study unifloral pine honey samples produced in Greece regarding their physicochemical parameters and antioxidant and antibacterial activity against five nosocomial and foodborne pathogens. These honeys showed physicochemical and microscopic characteristics within the legal limits, except for diastase activity, a parameter known to be highly variable, depending on various factors. Substantially higher levels of H2O2 were estimated compared to other types of honeydew honey, whereas protein content was similar. The total phenolic content was 451.38 ± 120.38 mg GAE/kg and antiradical activity ranged from 42.43 to 79.33%, while FRAP values (1.87 to 9.43 mmol Fe+2/kg) were in general higher than those reported in the literature. Various correlations could be identified among these parameters. This is the first attempt to investigate in depth the antibacterial activity of pine honey from Greece and correlate it with honey quality parameters. All tested honeys exerted variable but significant antibacterial activity, expressed as MIC and MBC values, comparable or even superior to manuka honey for some tested samples. Although honey antibacterial activity is mainly attributed to hydrogen peroxide and proteins in some cases (demonstrated by elevated MICs after catalase and Proteinase K treatment, respectively), no strong correlation between the antibacterial activity and hydrogen peroxide concentration or total protein content was demonstrated in this study. However, there was a statistically significant correlation of moisture, antioxidant and antibacterial activity against Klebsiella pneuomoniae, as well as antioxidant and antibacterial activity against Salmonella ser. Typhimurium. Interestingly, a statistically significant negative correlation has been observed between diastase activity and Staphylococcus aureus antibacterial activity. Overall, our data indicate multiple mechanisms of antibacterial activity exerted by pine honey.