Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(52): 32910-32918, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376214

RESUMO

Redox biochemistry plays a key role in the transduction of chemical energy in living systems. However, the compounds observed in metabolic redox reactions are a minuscule fraction of chemical space. It is not clear whether compounds that ended up being selected as metabolites display specific properties that distinguish them from nonbiological compounds. Here, we introduce a systematic approach for comparing the chemical space of all possible redox states of linear-chain carbon molecules to the corresponding metabolites that appear in biology. Using cheminformatics and quantum chemistry, we analyze the physicochemical and thermodynamic properties of the biological and nonbiological compounds. We find that, among all compounds, aldose sugars have the highest possible number of redox connections to other molecules. Metabolites are enriched in carboxylic acid functional groups and depleted of ketones and aldehydes and have higher solubility than nonbiological compounds. Upon constructing the energy landscape for the full chemical space as a function of pH and electron-donor potential, we find that metabolites tend to have lower Gibbs energies than nonbiological molecules. Finally, we generate Pourbaix phase diagrams that serve as a thermodynamic atlas to indicate which compounds are energy minima in redox chemical space across a set of pH values and electron-donor potentials. While escape from thermodynamic equilibrium toward kinetically driven states is a hallmark of life and its origin, we envision that a deeper quantitative understanding of the environment-dependent thermodynamic landscape of putative prebiotic molecules will provide a crucial reference for future origins-of-life models.


Assuntos
Quimioinformática/métodos , Simulação de Dinâmica Molecular , Açúcares/química , Aldeídos/química , Configuração de Carboidratos , Ácidos Carboxílicos/química , Cetonas/química , Oxirredução
2.
ACS Cent Sci ; 5(7): 1199-1210, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31404220

RESUMO

A quantitative understanding of the thermodynamics of biochemical reactions is essential for accurately modeling metabolism. The group contribution method (GCM) is one of the most widely used approaches to estimate standard Gibbs energies and redox potentials of reactions for which no experimental measurements exist. Previous work has shown that quantum chemical predictions of biochemical thermodynamics are a promising approach to overcome the limitations of GCM. However, the quantum chemistry approach is significantly more expensive. Here, we use a combination of quantum chemistry and machine learning to obtain a fast and accurate method for predicting the thermodynamics of biochemical redox reactions. We focus on predicting the redox potentials of carbonyl functional group reductions to alcohols and amines, two of the most ubiquitous carbon redox transformations in biology. Our method relies on semiempirical quantum chemistry calculations calibrated with Gaussian process (GP) regression against available experimental data and results in higher predictive power than the GCM at low computational cost. Direct calibration of GCM and fingerprint-based predictions (without quantum chemistry) with GP regression also results in significant improvements in prediction accuracy, demonstrating the versatility of the approach. We design and implement a network expansion algorithm that iteratively reduces and oxidizes a set of natural seed metabolites and demonstrate the high-throughput applicability of our method by predicting the standard potentials of more than 315 000 redox reactions involving approximately 70 000 compounds. Additionally, we developed a novel fingerprint-based framework for detecting molecular environment motifs that are enriched or depleted across different regions of the redox potential landscape. We provide open access to all source code and data generated.

3.
PLoS Comput Biol ; 14(10): e1006471, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30356318

RESUMO

Thermodynamics dictates the structure and function of metabolism. Redox reactions drive cellular energy and material flow. Hence, accurately quantifying the thermodynamics of redox reactions should reveal design principles that shape cellular metabolism. However, only few redox potentials have been measured, and mostly with inconsistent experimental setups. Here, we develop a quantum chemistry approach to calculate redox potentials of biochemical reactions and demonstrate our method predicts experimentally measured potentials with unparalleled accuracy. We then calculate the potentials of all redox pairs that can be generated from biochemically relevant compounds and highlight fundamental trends in redox biochemistry. We further address the question of why NAD/NADP are used as primary electron carriers, demonstrating how their physiological potential range fits the reactions of central metabolism and minimizes the concentration of reactive carbonyls. The use of quantum chemistry can revolutionize our understanding of biochemical phenomena by enabling fast and accurate calculation of thermodynamic values.


Assuntos
Fenômenos Bioquímicos , Modelos Químicos , Oxirredução , Termodinâmica , Modelos Lineares , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...