RESUMO
OBJECTIVES: COVID-19 has exacerbated barriers to routine testing for chronic disease management. This study investigates whether a home hemoglobin A1c (HbA1c) test kit intervention increases frequency of HbA1c testing and leads to changes in HbA1c 6 months post testing and whether self-reinforcement education improves maintenance of HbA1c testing. STUDY DESIGN: Retrospective analysis of a randomized, controlled quality improvement intervention among members with type 2 diabetes (T2D) in a large commercial health plan. METHODS: Participants were 41,214 commercial fully insured members with T2D without an HbA1c test in the past 6 months or with only 1 HbA1c test in the last 12 months. Members were randomly assigned to either a control group or an at-home HbA1c testing intervention group consisting of either an opt-in test or a direct-to-member opt-out HbA1c test kit shipment. A third cohort of members was assigned to a self-reinforcement group to encourage continued testing twice per year. Main outcomes were HbA1c testing rates and HbA1c levels (in %). RESULTS: A total of 11.1% (508 of 4590) at-home HbA1c kits were completed. At-home HbA1c test kits increased testing rates by 4.9% compared with controls (P < .001). Members with an HbA1c level of at least 7% who requested and completed at-home HbA1c testing had a 0.38% reduction in HbA1c in the 6 months post intervention when controlling for baseline HbA1c (P < .001). Members who received self-reinforcement messaging had a 0.37% HbA1c reduction post intervention (P = .015). CONCLUSIONS: This novel, at-home approach to test HbA1c is an effective intervention to increase testing rates and facilitate HbA1c reduction over time in patients with T2D.
Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Hemoglobinas Glicadas , Controle Glicêmico , Estudos RetrospectivosRESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the important antibiotic resistant pathogens causing infections in humans and animals. The increasing observation of MRSA in wildlife species has raised the concern of its impact on animal health and the potential of zoonotic transmission. This study investigated the prevalence of S. aureus in fecal samples from non-human primates in a zoo located in Jiangsu, China, in which 6 out of 31 (19.4%) fecal samples, and 2 out of 14 (14.3%) indoor room floor swab samples were S. aureus-positive. The antibiotic susceptibility tests of the eight isolates showed that the two isolates were resistant to both penicillin and cefoxitin, the three isolates were resistant only to penicillin, while three isolates were susceptible to all detected antibiotics. The two isolates resistant to cefoxitin were further identified as MRSA by the presence of mecA. Five different spa types were identified including t034 of two MRSA isolates from Trachypithecus francoisi, t189 of two methicillin-susceptible S. aureus (MSSA) isolates from Rhinopithecus roxellana, t377 of two MSSA isolates from Colobus guereza, and two novel spa types t19488 and t19499 from Papio anubis. Whole genome sequencing analysis showed that MRSA t034 isolates belonged to ST398 clustered in clonal complex 398 (CC398) and carried the type B ΦSa3 prophage. The phylogenetic analysis showed that the two MRSA t034/ST398 isolates were closely related to the human-associated MSSA in China. Moreover, two MRSA isolates contained the virulence genes relating to the cell adherence, biofilm formation, toxins, and the human-associated immune evasion cluster, which indicated the potential of bidirectional transfer of MRSA between monkeys and humans. This study is the first to report MRSA CC398 from monkey feces in China, indicating that MRSA CC398 could colonize in monkey and have the risk of transmission between humans and monkeys.
RESUMO
Salmonella enterica serovar Enteritidis remains the most prevalent serotype causing human salmonellosis through the consumption of contaminated foods, especially poultry products. The development of a subunit vaccine against S. Enteritidis can not only protect chickens against Salmonella infection in the poultry industry but also cut the transmission sources. In this study, both the expressed recombinant outer membrane protein F (rOmpF) and extracted outer membrane vesicles (OMVs) were developed as subunit vaccines against S. Enteritidis challenge in chickens. Immunization with the subunit vaccine could induce not only antibody production but also strong cell-mediated immune response. Both rOmpF plus QuilA adjuvant and OMVs alone had highly protective efficacy against S. Enteritidis challenge and rapidly decreased the colonization of bacteria in chicken. These findings revealed the potential application of rOmpF and OMVs as subunit vaccines in the poultry industry.
Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Animais , Galinhas , Fazendas , Humanos , Porinas , Aves Domésticas , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella enteritidis , Vacinas de Subunidades AntigênicasRESUMO
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a facultative intracellular pathogen deploying the type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) to transfer effector proteins into host cells to modify its functions and accomplish intracellular replication. To study the effect of SspH2 on immune response induced by S. Enteritidis, we generated a deletion mutant of the effector gene sspH2 and a plasmid mediated complementary strain in S. Enteritidis C50336. The results of LD50 showed that SspH2 has no obvious effect on the virulence of S. Enteritidis. However, deletion of sspH2 decreased the invasion and intercellular colonization of the bacteria in Caco2 BBE cells. Using bacteriological counts from tissue homogenates the result of colonization in internal organs showed that in spleen and liver tissues, at 3rd and 4th day p.i. there is a significance decreased number of C50336-ΔsspH2 compared to the C50336-WT and C50336-ΔsspH2-psspH2, respectively. The qRT-PCR analysis results of both in vivo and in vitro experiments clearly showed that the mutant strain C50336ΔsspH2 significantly promoted expression of IL-1ß, INF-γ, IL-12, and iNOS cytokines compared to the groups infected with the wild type or complementary strains, while the IL-8 synthesis was decreased in the mutant strain infected group. All of these findings revealed that SspH2 promotes the colonization of S. Enteritidis in host cells, and it is an important anti-inflammatory biased effector in Salmonella.
RESUMO
Staphylococcus aureus is a commensal bacterium and an important opportunistic pathogen in humans and animals. The increase in multi-drug resistant (MDR) strains of S. aureus is a growing concern due to their impact on animal health and potential for zoonotic transmission. Increasing evidence has shown that MRSA could be transmitted by faeces. The present study determined the prevalence, antibiotic resistance profile and genotypic characteristics of S. aureus isolated from monkey faecal samples in China. Thirty-eight out of 145 (26.21%) macaque faecal samples were S. aureus positive, which eight (5.5%) isolates were identified as MRSA. Antimicrobial susceptibility tests showed that most of the S. aureus isolates were resistant to tetracycline (TE, 44.74%), followed by penicillin (P, 21.05%), cefoxitin (FOX, 21.05%) and ciprofloxacin (CIP, 18.42%). The predominant spa types were t13638 (44.74%) and t189 (13.16%), which are reported to be closely associated with human infections in China. All MRSA isolates belonged to the SCCmecV type, which six of MRSA isolates were ST3268, while the other two isolates belonged to ST4981. This study for the first time describes the prevalence of S. aureus and MRSA in monkey faeces in China, indicating that faeces could be a potential factor of transmitting S. aureus between humans and monkeys.
Assuntos
Antibacterianos , Fezes/microbiologia , Haplorrinos/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/efeitos dos fármacos , Animais , China/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologiaRESUMO
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a host-ranged pathogen that can infect both animals and humans. Poultry and poultry products are the main carriers of S. Enteritidis, which can be transmitted to humans through the food chain. To eradicate the prevalence of S. Enteritidis in poultry farms, it is necessary to develop novel vaccines against the pathogen. In this study, we constructed two vaccine candidates, CZ14-1∆spiC∆nmpC and CZ14-1∆spiC∆rfaL, and evaluated their protective efficacy. Both mutant strains were much less virulent than the parental strain, as determined by the 50% lethal dose (LD50) for three-day-old specific-pathogen free (SPF) White Leghorns and Hyline White chickens. Immunization with the mutant candidates induced highly specific humoral immune responses and expression of cytokines IFN-γ, IL-1ß, and IL-6. In addition, the mutant strains were found to be persistent for almost three weeks post-infection. The survival percentages of chickens immunized with CZ14-1∆spiC∆nmpC and CZ14-1∆spiC∆rfaL reached 80% and 75%, respectively, after challenge with the parental strain. Overall, these results demonstrate that the two mutant strains can be developed as live attenuated vaccines.
RESUMO
Pullorum disease remains an epidemic in the poultry industry in China. The causing pathogen is a host-restricted Salmonella enterica serovar Pullorum, which can spread through both horizontal and vertical transmissions. To eradicate the pullorum disease from poultry farms, it is necessary to specifically monitor the prevalence of the bacterial infection in adult chicks. In this study, we constructed a new competitive ELISA method based on the development of monoclonal antibodies (MAbs) against a specific immunogen of S. Pullorum, IpaJ protein. In total, eight MAbs against IpaJ were prepared using the purified recombinant His-IpaJ protein as the immunogen. Characterization of the eight MAbs demonstrated that 4G5 can be used as the competitive antibody in ELISA. A competitive ELISA was subsequently developed using purified MBP-IpaJ as the capture (0.5 µg/ml) and the HRP-labeled 4G5 (0.14 µg/ml) as the competitive antibody, respectively. A specificity test demonstrated that the ELISA assay can differentiate antisera of S. Pullorum-infected chickens from that of S. Gallinarum and S. Enteritidis. Furthermore, 4 out of 200 clinical antisera collected from a poultry farm were detected to be S. Pulloram positive using this method. The plate agglutination test (PAT) and the previously established indirect ELISA confirmed that these positive antisera reacted specifically with S. Pullorum. We propose that the established competitive ELISA assay based on MAb against IpaJ protein, is a novel and quick method that can detect S. Pullroum infection in the poultry industry.
RESUMO
BACKGROUND: Salmonella enterica serovar Pullorum is a host-restricted serotype causing infection in poultry. The pathogen can not only cause acute infection in young chicks with high mortality and morbidity, but also persist in adult chickens without evident clinical symptoms and lead to vertical transmission. To eradicate S. Pullorum in poultry farms, it is necessary to establish an efficient method to monitor the prevalence of the pathogen in adult chickens. The protein IpaJ is a specific immunogen in S. Pullorum and is not detected in closely related serotypes, such as S. Gallinarum and S. Enteritidis. RESULTS: In the present study, IpaJ was expressed as a recombinant fusion protein MBP-IpaJ in E. coli. The purified MBP-IpaJ was used as a coating antigen to develop an indirect ELISA assay, which was applied to the detection of S. Pullorum infection in chickens. The indirect ELISA assay demonstrated that antibodies produced against IpaJ were detectable in antisera of chickens infected with S. Pullorum in the second week, stably increased until the tenth week, and persisted at a high level in the following two weeks. Furthermore, the ELISA method detected four positive samples out of 200 clinical antiserum samples collected from a poultry farm, and the positive samples were confirmed to be reacted with S. Pullorum using the standard plate agglutination test. CONCLUSIONS: The established indirect ELISA using the IpaJ protein is a novel method for specific detection of S. Pullorum infection, and contribute to eradication of pullorum disease in the poultry industry.
Assuntos
Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Aves Domésticas/diagnóstico , Proteínas Recombinantes de Fusão/imunologia , Salmonelose Animal/diagnóstico , Animais , Anticorpos Antibacterianos/imunologia , Galinhas/microbiologia , Ensaio de Imunoadsorção Enzimática/métodos , Soros Imunes/imunologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica , Sensibilidade e EspecificidadeRESUMO
Salmonella enterica serovar Enteritidis (SE) is a communicable zoonotic bacterium. Macrophages are essential for Salmonella survival, transmission, and infection. In this study, selective capture of transcribed sequences (SCOTS) was used to screen genes preferentially expressed by SE during contact with macrophages from different hosts. We found 57 predicted genes and 52 genes expressed by SE during interaction with avian HD-11 and murine RAW264.7 cells, respectively. These expressed genes were involved in virulence, metabolism, stress response, transport, regulation, and other functions. Although genes related to survival or metabolic pathways were needed during SE infection, different gene expression profiles of SE occurred in the two macrophage cell lines. qRT-PCR results confirmed that most screened genes were upregulated during infection in contrast to the observation during in vitro cultivation, with different expression levels in infected avian macrophages at 2-h and 7-h post-infection. In addition, in vitro and in vivo competition assays confirmed that SEN3610 (a putative deoR family regulator) and rfaQ (related to LPS synthesis) were closely related to SE virulence in both mice and chickens. Three putative transcriptional regulators, SEN2967, SEN4299, and rtcR, were related to SE colonization in mice, while the ycaM mutation caused decreased infection and survival of SE in HD-11 cells without influencing virulence in mice or chicken. Genes showing differential expression between SE-infected avian and murine macrophages indicate specific pathogen adaptation to enable infection of various hosts.
Assuntos
Genes Bacterianos/genética , Técnicas Genéticas , Macrófagos/imunologia , Salmonella enteritidis/genética , Salmonella enteritidis/imunologia , Animais , Linhagem Celular , Galinhas , Regulação da Expressão Gênica/imunologia , Genes Bacterianos/imunologia , Camundongos , Doenças das Aves Domésticas/imunologia , Células RAW 264.7 , Salmonelose Animal , Virulência/genéticaRESUMO
This paper concentrates on a study of a novel multi-sensor aided method by using acoustic and visual sensors for detection, recognition and separation of End-of Life vehicles' (ELVs) plastic materials, in order to optimize the recycling rate of automotive shredder residues (ASRs). Sensor-based sorting technologies have been utilized for material recycling for the last two decades. One of the problems still remaining results from black and dark dyed plastics which are very difficult to recognize using visual sensors. In this paper a new multi-sensor technology for black plastic recognition and sorting by using impact resonant acoustic emissions (AEs) and laser triangulation scanning was introduced. A pilot sorting system which consists of a 3-dimensional visual sensor and an acoustic sensor was also established; two kinds commonly used vehicle plastics, polypropylene (PP) and acrylonitrile-butadiene-styrene (ABS) and two kinds of modified vehicle plastics, polypropylene/ethylene-propylene-diene-monomer (PP-EPDM) and acrylonitrile-butadiene-styrene/polycarbonate (ABS-PC) were tested. In this study the geometrical features of tested plastic scraps were measured by the visual sensor, and their corresponding impact acoustic emission (AE) signals were acquired by the acoustic sensor. The signal processing and feature extraction of visual data as well as acoustic signals were realized by virtual instruments. Impact acoustic features were recognized by using FFT based power spectral density analysis. The results shows that the characteristics of the tested PP and ABS plastics were totally different, but similar to their respective modified materials. The probability of scrap material recognition rate, i.e., the theoretical sorting efficiency between PP and PP-EPDM, could reach about 50%, and between ABS and ABS-PC it could reach about 75% with diameters ranging from 14 mm to 23 mm, and with exclusion of abnormal impacts, the actual separation rates were 39.2% for PP, 41.4% for PP/EPDM scraps as well as 62.4% for ABS, and 70.8% for ABS/PC scraps. Within the diameter range of 8-13 mm, only 25% of PP and 27% of PP/EPDM scraps, as well as 43% of ABS, and 47% of ABS/PC scraps were finally separated. This research proposes a new approach for sensor-aided automatic recognition and sorting of black plastic materials, it is an effective method for ASR reduction and recycling.