Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
Int J Cancer ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949756

RESUMO

Gliomas are primary brain tumors and are among the most malignant types. Adult-type diffuse gliomas can be classified based on their histological and molecular signatures as IDH-wildtype glioblastoma, IDH-mutant astrocytoma, and IDH-mutant and 1p/19q-codeleted oligodendroglioma. Recent studies have shown that each subtype of glioma has its own specific distribution pattern. However, the mechanisms underlying the specific distributions of glioma subtypes are not entirely clear despite partial explanations such as cell origin. To investigate the impact of multi-scale brain attributes on glioma distribution, we constructed cumulative frequency maps for diffuse glioma subtypes based on T1w structural images and evaluated the spatial correlation between tumor frequency and diverse brain attributes, including postmortem gene expression, functional connectivity metrics, cerebral perfusion, glucose metabolism, and neurotransmitter signaling. Regression models were constructed to evaluate the contribution of these factors to the anatomic distribution of different glioma subtypes. Our findings revealed that the three different subtypes of gliomas had distinct distribution patterns, showing spatial preferences toward different brain environmental attributes. Glioblastomas were especially likely to occur in regions enriched with synapse-related pathways and diverse neurotransmitter receptors. Astrocytomas and oligodendrogliomas preferentially occurred in areas enriched with genes associated with neutrophil-mediated immune responses. The functional network characteristics and neurotransmitter distribution also contributed to oligodendroglioma distribution. Our results suggest that different brain transcriptomic, neurotransmitter, and connectomic attributes are the factors that determine the specific distributions of glioma subtypes. These findings highlight the importance of bridging diverse scales of biological organization when studying neurological dysfunction.

2.
Heliyon ; 10(11): e31972, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868058

RESUMO

Background: This study clarified the expression of cicrTLK1 in non-small cell lung cancer (NSCLC) and explored its role in cancer growth, metastasis and immune escape, providing a potential molecular target and theoretical basis for NSCLC treatment. Methods: The expression levels of circTLK1, miR-876-3p and SRSF7 were determined by RT-qPCR assay. The localization of circTLK1 in NSCLC cells was determined by FISH assay. EdU and cell plate clone formation assay were applied to explore cell proliferation. Wound healing test and Transwell assay were applied to measure the migration and invasion ability. Cell apoptosis rate was detected by FCM assay. Western blotting assay was adopted to measure the protein expression of SRSF7. Dual-luciferase reporter gene assay was applied to assess the interaction between miR-876-3p and circTLK1, and between miR-876-3p and SRSF7. The ability of cirTLK1 to regulate tumor formation in vivo was examined by tumor transplantation experiments in nude mice. Results: The relative expression of circTLK1 was increased in NSCLC cell lines. Knockdown of circTLK1 prohibited the proliferation, migration, and invasion, and promoted apoptosis rate, but miR-876-3p inhibitor reversed the effects of circTLK1 knockdown. In addition, silencing of circTLK1 overtly restrained the growth of transplanted tumors in vivo, and inhibited immune escape. In addition, circTLK1 interacted with miR-876-3p, and SRSF7 was concluded to be the target gene of miR-876-3p. Conclusion: In this study, we researched the inhibitory effect of circTLK1knockdown on NSCLC progression and immune escape, and further elucidated the potential regulatory mechanism of circTLK1/miR876-3p/SRSF7 axis.

3.
Brain Behav Immun ; 120: 256-274, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852761

RESUMO

Major depressive disorder (MDD) is a global health burden characterized by persistent low mood, deprivation of pleasure, recurrent thoughts of death, and physical and cognitive deficits. The current understanding of the pathophysiology of MDD is lacking, resulting in few rapid and effective antidepressant therapies. Recent studies have pointed to the sigma-1 (σ-1) receptor as a potential rapid antidepressant target; σ-1 agonists have shown promise in a variety of preclinical depression models. Hypidone hydrochloride (YL-0919), an independently developed antidepressant by our institute with faster onset of action and low rate of side effects, has recently emerged as a highly selective σ-1 receptor agonist; however, its underlying astrocyte-specific mechanism is unknown. In this study, we investigated the effect of YL-0919 treatment on gene expression in the prefrontal cortex of depressive-like mice by single-cell RNA sequencing. Furthermore, we knocked down σ-1 receptors on astrocytes in the medial prefrontal cortex of mice to explore the effects of YL-0919 on depressive-like behavior and neuroinflammation in mice. Our results demonstrated that astrocyte-specific knockdown of σ-1 receptor resulted in depressive-like behavior in mice, which was reversed by YL-0919 administration. In addition, astrocytic σ-1 receptor deficiency led to activation of the NF-κB inflammatory pathway, and crosstalk between reactive astrocytes and activated microglia amplified neuroinflammation, exacerbating stress-induced neuronal apoptosis. Furthermore, the depressive-like behavior induced by astrocyte-specific knockdown of the σ-1 receptor was improved by a selective NF-κB inhibitor, JSH-23, in mice. Our study not only reaffirms the σ-1 receptor as a key target of the faster antidepressant effect of YL-0919, but also contributes to the development of astrocytic σ-1 receptor-based novel drugs.

4.
Insects ; 15(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921109

RESUMO

Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host's siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs' hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults.

5.
Micromachines (Basel) ; 15(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38930660

RESUMO

In this paper, a dual-passband frequency selective surface (FSS) with high angular stability and polarization insensitivity is proposed. The unit structure consists of a circular aperture, two annular apertures and four cross apertures. The designed FSS can achieve a double-passband at the interested frequencies of 8.45 GHz and 12.76 GHz with an insertion loss of less than 1 dB, and it can retain a stable transmission characteristic with the incident angle ranging from 0° to 86° for TE mode and from 0° to 83° for TM mode. Good agreement between the experimental results and the simulated response verifies the feasibility of the proposed FSS.

6.
Front Microbiol ; 15: 1291947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915301

RESUMO

Introduction: Variability in microbial residues within soil aggregates are becoming progressively essential to the nutritive and sustainability of soils, and are therefore broadly regarded as an indispensable part of soil organic matter. It is unexplored how the widespread implementation of microbial fertilisers in agricultural production impacts soil organic nutrients, in particular the microbial residue fraction. Methods: We performed a three-year field experiment to verify the distinct impacts of microbial and organic fertilizers on carbon accumulation in soil microbial leftovers among aggregate fractions. Results: Microbial residual carbon was shown to decrease insignificantly during the application of microbial fertilizer and to rise marginally afterwards with the utilization of organic fertilizer. However, the combined effects of the two fertilizers had substantial impacts on the accumulation of microbial residual carbon. Changes in the structure of the fungi and bacteria shown in this study have implications for the short-term potential of microbial fertilizer shortages to permanent soil carbon sequestration. Additionally, our findings revealed variations in microbial residue accumulation across the microbial fertilizers, with Azotobacter chroococcum fertilizer being preferable to Bacillus mucilaginosus fertilizer due to its higher efficiency. In this scenario of nutrient addition, fungal residues may serve as the primary binding component or focal point for the production of new microaggregates, since the quantity of SOC provided by fungal residues increased while that supplied by bacterial residues decreased. Discussion: Our findings collectively suggested that the mechanisms behind the observed bacterial and fungal MRC (microbial residue carbon) responses to microbial fertilizer or organic fertilizer in bamboo forest soils are likely to be distinct. The application of microbial fertilizers for a limited duration led to a decline soil stable carbon pool, potentially influencing the regulation of soil nutrients in such hilly bamboo forests.

7.
Biomed Pharmacother ; 177: 116965, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925019

RESUMO

BACKGROUND AND PURPOSE: GLP-1 receptor agonists are clinically utilized for type 2 diabetes and obesity. In vitro and in vivo preclinical studies were performed to assess the druggability of a novel small molecule GLP-1 receptor biased agonist SAL0112. EXPERIMENTAL APPROACH: The HTRF assay, FLIPR assay, TR-FRET assay, and PathHunter assay were utilized for in vitro studies. Liver transporter tests were conducted using the HEK293-OATP1B1 and HEK293-OATP1B3 cell lines. In vitro stability assessments of various species and in vivo PK studies in rodents were performed. A model of type 2 diabetes and obesity induced by a high-energy diet in transgenic C57BL/6 mice expressing the human GLP-1 receptor gene was conducted. PRINCIPAL RESULTS: SAL0112 demonstrated high potency and selectivity in activating the Gαs pathway of the GLP-1 receptor, with no observed desensitization. SAL0112 demonstrated greater stability in human and rat liver microsomes compared to Danuglipron. In vivo PK studies revealed higher absorption of SAL0112 in rats. SAL0112 displayed a significantly lower potential for DDI on liver transporters compared to Danuglipron. SAL0112 led to significant reductions in body weight (P<0.001), blood glucose levels in OGTT (P<0.001), HbA1c (P<0.05) and improved insulin resistance (P<0.01). Notably, it increased peripheral adipocyte density and resolved hepatic steatosis. The efficacy of SAL0112 was found to be comparable to that of Danuglipron and Liraglutide. CONCLUSION: SAL0112 demonstrated potent and selective GLP-1 receptor biased agonism, effectively alleviating signs of type 2 diabetes in a mouse model. These promising findings pave the way for the advancement of SAL0112 into clinical trials.

8.
Neurochem Int ; 177: 105765, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750960

RESUMO

BACKGROUND: Perioperative neurocognitive disorders (PND) are common complications after surgery in older patients. However, the specific mechanism of this condition remains unclear. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophin that abundantly expressed throughout the brain. It can enhance synaptic plasticity and alleviate learning and memory impairments. Thus, the purpose of this study was to investigate the role of GDNF in PND and the mechanisms involved. METHODS: The PND animal model was established by performing left tibial fracture surgery on 18-month-old C57BL/6 mice under sevoflurane anesthesia. Recombinant adeno-associated virus (rAAV)-GDNF or empty vectors were injected bilaterally into the hippocampal CA1 region of aged mice 3 weeks before anesthesia/surgery. The open field and fear conditioning test were used to assess the behavior changes. Golgi staining and electrophysiology were utilized to evaluate the morphological and functional alterations of neuronal synaptic plasticity. Western blot analysis was carried out to measure the proteins expression levels and immunofluorescence staining was performed to probe the cellular localization of GDNF. RESULTS: Mice with surgery and anesthesia showed a significant decrease in hippocampus-dependent learning and memory, accompanied by a decline in hippocampal synaptic plasticity. Anesthesia/surgery induced a reduction of GDNF, which was colocalized with astrocytes. Overexpression of GDNF in astrocytes could ameliorate the decline in cognitive function by improving hippocampal synaptic plasticity, meanwhile astrocytic GDNF rescued the anesthesia/surgery-induced decrease in GFRα1 and NCAM. CONCLUSION: The study concludes that astrocytic GDNF may improve anesthesia/surgery-induced cognitive impairment by promoting hippocampal synaptic plasticity in aged mice via the GFRα1/NCAM pathway.


Assuntos
Astrócitos , Disfunção Cognitiva , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Hipocampo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Camundongos , Astrócitos/metabolismo , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Envelhecimento , Anestesia
9.
Ecotoxicol Environ Saf ; 278: 116422, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705040

RESUMO

Although more attention has been paid to microplastics (MPs) pollution in environment, research on the synthetic influence of microplastic and heavy metals remains limited. To help fill this information gap, we investigated the adsorption behavior of virgin polyvinyl chloride microplastics (PVCMPs) (≤450 µm white spherical powder) on cadmium (II). The effects on seed germination, seedling growth, photosynthetic system, oxidative stress indicators of lettuce, and changes in Cd bioavailability were evaluated under Cd2+ (25 µmol/L), PVCMPs (200 mg/L), and PVCMP-Cd combined (200 mg/L + 25 µmol/L) exposures in hydroponic system. The results demonstrated that the PVCMPs effectively adsorbed Cd ions, which validated by the pseudo-second-order kinetic and the Langmuir isotherm models, indicating the sorption of Cd2+ on the PVCMPs was primary chemisorption and approximates monomolecular layer sorption. Compared to MPs, Cd significantly inhibits plant seed germination and seedling growth and development. However, Surprising improvement in seed germination under PVCMPs-Cd exposure was observed. Moreover, Cd2+ and MPs alone or combined stress caused oxidative stress with reactive oxygen species (ROS) including H2O2, O2- and Malondialdehyde (MDA) accumulation in plants, and substantially damaged to photosynthesis. With the addition of PVCMPs, the content of Cd in the leaves significantly (P<0.01) decreased by 1.76-fold, and the translocation factor and Cd2+removal rate in the water substantially (P<0.01) decreased by 6.73-fold and 1.67-fold, respectively in contrast to Cd2+ stress alone. Therefore, it is concluded the PVCMP was capable of reducing Cd contents in leaves, alleviating Cd toxicity in lettuce. Notably, this study provides a scientific foundation and reference for comprehending the toxicological interactions between microplastics and heavy metals in the environment.


Assuntos
Cádmio , Germinação , Hidroponia , Lactuca , Microplásticos , Estresse Oxidativo , Poluentes Químicos da Água , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Cádmio/toxicidade , Microplásticos/toxicidade , Germinação/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fotossíntese/efeitos dos fármacos , Adsorção , Cloreto de Polivinila , Espécies Reativas de Oxigênio/metabolismo
10.
Animals (Basel) ; 14(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731340

RESUMO

Heterosis refers to the phenomenon where hybrids exhibit superior performance compared to the parental phenotypes and has been widely utilized in crossbreeding programs for animals and crops, yet the molecular mechanisms underlying this phenomenon remain enigmatic. A better understanding of the gene expression patterns in post-hatch chickens is very important for exploring the genetic basis underlying economically important traits in the crossbreeding of chickens. In this study, breast muscle and liver tissues (n = 36) from full-sib F1 birds and their parental pure lines were selected to identify gene expression patterns and differentially expressed genes (DEGs) at 28 days of age by strand-specific RNA sequencing (ssRNA-seq). This study indicates that additivity is the predominant gene expression pattern in the F1 chicken post-hatch breast muscle (80.6% genes with additivity) and liver (94.2% genes with additivity). In breast muscle, Gene Ontology (GO) enrichment analysis revealed that a total of 11 biological process (BP) terms closely associated with growth and development were annotated in the identified DEG sets and non-additive gene sets, including STAT5A, TGFB2, FGF1, IGF2, DMA, FGF16, FGF12, STAC3, GSK3A, and GRB2. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation presented that a total of six growth- and development-related pathways were identified, involving key genes such as SLC27A4, GLUL, TGFB2, COX17, and GSK3A, including the PPAR signaling pathway, TGF-beta signaling pathway, and mTOR signaling pathway. Our results may provide a theoretical basis for crossbreeding in domestic animals.

11.
J Cancer Res Ther ; 20(2): 522-530, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687921

RESUMO

ABSTRACT: Bone sarcomas encompass a group of spontaneous mesenchymal malignancies, among which osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma are the most common subtypes. Chondrosarcoma, a relatively prevalent malignant bone tumor that originates from chondrocytes, is characterized by endogenous cartilage ossification within the tumor tissue. Despite the use of aggressive treatment approaches involving extensive surgical resection, chemotherapy, and radiotherapy for patients with osteosarcoma, chondrosarcoma, and chordoma, limited improvements in patient outcomes have been observed. Furthermore, resistance to chemotherapy and radiation therapy has been observed in chondrosarcoma and chordoma cases. Consequently, novel therapeutic approaches for bone sarcomas, including chondrosarcoma, need to be uncovered. Recently, the emergence of immunotherapy and immune checkpoint inhibitors has garnered attention given their clinical success in various diverse types of cancer, thereby prompting investigations into their potential for managing chondrosarcoma. Considering that circumvention of immune surveillance is considered a key factor in the malignant progression of tumors and that immune checkpoints play an important role in modulating antitumor immune effects, blockers or inhibitors targeting these immune checkpoints have become effective therapeutic tools for patients with tumors. One such checkpoint receptor implicated in this process is programmed cell death protein-1 (PD-1). The association between PD-1 and programmed cell death ligand-1 (PD-L1) and cancer progression in humans has been extensively studied, highlighting their remarkable potential as biomarkers for cancer treatment. This review comprehensively examines available studies on current chondrosarcoma treatments and advancements in anti-PD-1/PD-L1 blockade therapy for chondrosarcoma.


Assuntos
Antígeno B7-H1 , Neoplasias Ósseas , Condrossarcoma , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Humanos , Condrossarcoma/terapia , Condrossarcoma/patologia , Condrossarcoma/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos
12.
J Orthop Surg Res ; 19(1): 236, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609952

RESUMO

OBJECTIVE: Osteonecrosis of the femoral head (ONFH) is a severe disease that primarily affects the middle-aged population, imposing a significant economic and social burden. Recent research has linked the progression of non-traumatic osteonecrosis of the femoral head (NONFH) to the composition of the gut microbiota. Steroids and alcohol are considered major contributing factors. However, the relationship between NONFH caused by two etiologies and the microbiota remains unclear. In this study, we examined the gut microbiota and fecal metabolic phenotypes of two groups of patients, and analyzed potential differences in the pathogenic mechanisms from both the microbial and metabolic perspectives. METHODS: Utilizing fecal samples from 68 NONFH patients (32 steroid-induced, 36 alcohol-induced), high-throughput 16 S rDNA sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS) metabolomics analyses were conducted. Univariate and multivariate analyses were applied to the omics data, employing linear discriminant analysis effect size to identify potential biomarkers. Additionally, functional annotation of differential metabolites and associated pathways was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Subsequently, Spearman correlation analysis was employed to assess the potential correlations between differential gut microbiota and metabolites. RESULTS: High-throughput 16 S rDNA sequencing revealed significant gut microbial differences. At the genus level, the alcohol group had higher Lactobacillus and Roseburia, while the steroid group had more Megasphaera and Akkermansia. LC-MS/MS metabolomic analysis indicates significant differences in fecal metabolites between steroid- and alcohol-induced ONFH patients. Alcohol-induced ONFH (AONFH) showed elevated levels of L-Lysine and Oxoglutaric acid, while steroid-induced ONFH(SONFH) had increased Gluconic acid and Phosphoric acid. KEGG annotation revealed 10 pathways with metabolite differences between AONFH and SONFH patients. Correlation analysis revealed the association between differential gut flora and differential metabolites. CONCLUSIONS: Our results suggest that hormones and alcohol can induce changes in the gut microbiota, leading to alterations in fecal metabolites. These changes, driven by different pathways, contribute to the progression of the disease. The study opens new research directions for understanding the pathogenic mechanisms of hormone- or alcohol-induced NONFH, suggesting that differentiated preventive and therapeutic approaches may be needed for NONFH caused by different triggers.


Assuntos
Microbioma Gastrointestinal , Pessoa de Meia-Idade , Humanos , Cabeça do Fêmur , Cromatografia Líquida , Espectrometria de Massas em Tandem , Etanol , Esteroides/efeitos adversos , DNA Ribossômico
13.
J Orthop Surg Res ; 19(1): 232, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594698

RESUMO

BACKGROUND: For knee osteoarthritis patients, analyzing alignment of lower limbs is essential for therapy, which is currently measured from standing long-leg radiographs of anteroposterior X-ray (LLR) manually. To address the time wasting, poor reproducibility and inconvenience of use caused by existing methods, we present an automated measurement model in portable devices for assessing knee alignment from LLRs. METHOD: We created a model and trained it with 837 conforming LLRs, and tested it using 204 LLRs without duplicates in a portable device. Both manual and model measurements were conducted independently, then we recorded knee alignment parameters such as Hip knee ankle angle (HKA), Joint line convergence angle (JCLA), Anatomical mechanical angle (AMA), mechanical Lateral distal femoral angle (mLDFA), mechanical Medial proximal tibial angle (mMPTA), and the time required. We evaluated the model's performance compared with manual results in various metrics. RESULT: In both the validation and test sets, the average mean radial errors were 2.778 and 2.447 (P<0.05). The test results for native knee joints showed that 92.22%, 79.38%, 87.94%, 79.82%, and 80.16% of the joints reached angle deviation<1° for HKA, JCLA, AMA, mLDFA, and mMPTA. Additionally, for joints with prostheses, 90.14%, 93.66%, 86.62%, 83.80%, and 85.92% of the joints reached that. The Chi-square test did not reveal any significant differences between the manual and model measurements in subgroups (P>0.05). Furthermore, the Bland-Altman 95% limits of agreement were less than ± 2° for HKA, JCLA, AMA, and mLDFA, and slightly more than ± 2 degrees for mMPTA. CONCLUSION: The automatic measurement tool can assess the alignment of lower limbs in portable devices for knee osteoarthritis patients. The results are reliable, reproducible, and time-saving.


Assuntos
Aprendizado Profundo , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Reprodutibilidade dos Testes , Extremidade Inferior/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Tíbia , Fêmur , Estudos Retrospectivos
14.
Artigo em Inglês | MEDLINE | ID: mdl-38639620

RESUMO

Background: Esophageal cancer (EC) remains a significant global health concern. Minimally invasive surgical techniques, including robot-assisted approaches, have emerged as promising options for improving outcomes and patient recovery in EC management. Objective: This study aims to evaluate the clinical utility of robot-assisted minimally invasive esophagectomy (RAMIE) in the treatment of EC. Methods: A total of 160 EC patients undergoing treatment at our hospital were included in this study. Patients were randomly assigned to either the research group, receiving RAMIE, or the control group, undergoing thoracoscopic minimally invasive esophagectomy (MIE). Surgical outcomes, postoperative recovery, complication rates, and changes in inflammatory factors (IFs) such as malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were compared between the two groups. Additionally, prognostic survival and EC recurrence rates were assessed at a 1-year follow-up. Results: The research group demonstrated longer operative times, a higher number of dissected lymph nodes, reduced intraoperative bleeding, and quicker postoperative recovery compared to the control group, with significantly fewer complications (P < .05). Furthermore, the research group exhibited lower levels of postoperative IFs and MDA, along with higher levels of SOD and GSH-Px, compared to the control group (P < .05). There was no significant difference between the two groups in terms of prognostic survival and EC recurrence rates (P > .05). Conclusion: RAMIE demonstrates superior efficacy in enhancing therapeutic outcomes and accelerating postoperative recovery in patients with EC, thus establishing its value in EC treatment protocols. RAMIE is suggested as a valuable therapeutic option and warrants clinical adoption for EC management.

15.
Inorg Chem ; 63(19): 8636-8641, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38687978

RESUMO

Removal of carbon dioxide (CO2) from a CO2/N2 mixture by utilizing CO2-selective sorbents is important from the perspective of energy security and environmental sustainability. Herein, a microporous metal-organic framework (MOF) composed of manganese(II) and a bifunctional linker 5-(4H-1,2,4-triazol-4-yl)benzene-1,3-dicarboxylic acid (H2L), [Mn(HL)2] (1) is designed and synthesized using a hydrothermal method. Characterized by single-crystal X-ray diffraction (SCXRD), a microporous channel was found in the structure of compound 1 along the a-axis. Attributed to hydrogen-binding interactions between CO2 molecules and N- and O-donor ligands in its microporous one-dimensional (1D) channel, compound 1 exhibits favorable adsorption of CO2 over N2. Further, verified by experimental breakthrough tests, the CO2/N2 mixture can be separated efficiently. This work provides potential guidance for designing CO2-selective MOFs for CO2/N2 separation.

16.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475441

RESUMO

Nuclides pollution and its biological effects are of great concern, especially for bryophytes during their terrestrial adaptation. Understanding PSII activity and electron transport response is vital for comprehending moss abiotic stress reactions. However, little is known about the photosynthetic performance of moss under nuclide treatment. Therefore, this study aimed to evaluate the chlorophyll fluorescence of Racomitrium japonicum L. The moss was subjected to Sr2+ solutions at concentrations of 5, 50, and 500 mg/L to evaluate chlorophyll a fluorescence using the OJIP test. Moderate and high Sr2+ stress led to inner cell membrane dissolution and reduced chlorophyll content, indicating impaired light energy absorption. At 5 mg/L Sr2+, fluorescence kinetics showed increased light energy capture, energy dissipation, and total photosynthetic driving force, thus stimulating transient photosynthetic activity of PSII and improving PSI reduction. Linear electron transfer and PSII stability significantly decreased under moderate and high Sr2+ stress, indicating potential photosynthetic center damage. Cyclic electron transfer (CEF) alleviated photosynthetic stress at 5 mg/L Sr2+. Thus, low Sr2+ levels stimulated CEF, adjusting energy flux and partitioning to protect the photosynthetic apparatus. Nevertheless, significant damage occurred due to inefficient protection under high Sr2+ stress.

17.
Alzheimers Dement ; 20(5): 3251-3269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501315

RESUMO

INTRODUCTION: Although glymphatic function is involved in Alzheimer's disease (AD), its potential for predicting the pathological and clinical progression of AD and its sequential association with core AD biomarkers is poorly understood. METHODS: Whole-brain glymphatic activity was measured by diffusion tensor image analysis along the perivascular space (DTI-ALPS) in participants with AD dementia (n = 47), mild cognitive impairment (MCI; n = 137), and normal controls (n = 235) from the Alzheimer's Disease Neuroimaging Initiative. RESULTS: ALPS index was significantly lower in AD dementia than in MCI or controls. Lower ALPS index was significantly associated with faster changes in amyloid positron emission tomography (PET) burden and AD signature region of interest volume, higher risk of amyloid-positive transition and clinical progression, and faster rates of amyloid- and neurodegeneration-related cognitive decline. Furthermore, the associations of the ALPS index with cognitive decline were fully mediated by amyloid PET and brain atrophy. DISCUSSION: Glymphatic failure may precede amyloid pathology, and predicts amyloid deposition, neurodegeneration, and clinical progression in AD. HIGHLIGHTS: The analysis along the perivascular space (ALPS) index is reduced in patients with Alzheimer's disease (AD) dementia, prodromal AD, and preclinical AD. Lower ALPS index predicted accelerated amyloid beta (Aß) positron emission tomography (PET) burden and Aß-positive transition. The decrease in the ALPS index occurs before cerebrospinal fluid Aß42 reaches the positive threshold. ALPS index predicted brain atrophy, clinical progression, and cognitive decline. Aß PET and brain atrophy mediated the link of ALPS index with cognitive decline.


Assuntos
Doença de Alzheimer , Encéfalo , Disfunção Cognitiva , Progressão da Doença , Sistema Glinfático , Tomografia por Emissão de Pósitrons , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Feminino , Masculino , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/patologia , Idoso , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Imagem de Tensor de Difusão , Biomarcadores/líquido cefalorraquidiano , Atrofia/patologia , Idoso de 80 Anos ou mais
18.
J Pharmacol Sci ; 154(4): 236-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485341

RESUMO

Postpartum depression (PPD) is a significant contributor to maternal morbidity and mortality. The Sigma-1 (σ-1) receptor has received increasing attention in recent years because of its ability to link different signaling systems and exert its function in the brain through chaperone actions, especially in neuropsychiatric disorders. YL-0919, a novel σ-1 receptor agonist developed by our institute, has shown antidepressive and anxiolytic effects in a variety of animal models, but effects on PPD have not been revealed. In the present study, excitatory/inhibitory signaling in the hippocampus was reflected by GABA and glutamate and their associated excitatory-inhibitory receptor proteins, the HPA axis hormones in the hippocampus were assessed by ELISA. Finally, immunofluorescence for markers of newborn neuron were undertaken in the dentate gyri, along with dendritic spine staining and dendritic arborization tracing. YL-0919 rapidly improves anxiety and depressive-like behavior in PPD-like mice within one week, along with normalizing the excitation/inhibition signaling as well as the HPA axis activity. YL-0919 rescued the decrease in hippocampal dendritic complexity and spine density induced by estrogen withdrawal. The study results suggest that YL-0919 elicits a therapeutic effect on PPD-like mice; therefore, the σ-1 receptor may be a novel promising target for PPD treatment in the future.


Assuntos
Ácido Glutâmico , Receptor Sigma-1 , Feminino , Camundongos , Animais , Ácido Glutâmico/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hipocampo/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Estrogênios , Plasticidade Neuronal , Ácido gama-Aminobutírico/metabolismo
19.
Sci Rep ; 14(1): 7057, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528010

RESUMO

Creep is one of the typical mechanical properties of clay, and studying the creep mechanical properties of clay is of great significance to construction projects in clay sites. This study conducted creep tests on Chengdu clay and found that the soil mass underwent elastic deformation, decay creep deformation, steady-state creep deformation, and accelerated creep deformation. The isochronous stress ratio-logarithmic strain curves and their mathematical models were proposed to thoroughly analyze clay creep mechanical properties. Creep automatic feature points, such as linear elastic extreme point, initial yield point, long-term strength point, and plastic point, were identified on the curve. Considering the hardening and damage effects during creep loading, linear elastic and viscoelastic elements considering the time-dependent damage, a viscoplastic element considering the load hardening effect, and viscoplastic and plastic elements considering the load damage effect were established based on the element model and the Riemann-Liouville fractional derivative. Based on the mechanical properties of the whole clay creep process, the creep mechanical feature points, and the established element model, a clay creep model was proposed considering the hardening and damage effects. The rationality and regularity of the creep model were verified using the creep test data. This research accurately revealed the creep mechanical properties of clay and facilitated soil deformation prediction, thus providing technical guidance and references for construction projects in clay sites.

20.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466881

RESUMO

BACKGROUND: Autoimmune hepatitis (AIH) is an immune-mediated liver disease of unknown etiology accompanied by intestinal dysbiosis and a damaged intestinal barrier. Berberine (BBR) is a traditional antibacterial medicine that has a variety of pharmacological properties. It has been reported that BBR alleviates AIH, but relevant mechanisms remain to be fully explored. METHODS: BBR was orally administered at doses of 100 mg⋅kg-1⋅d-1 for 7 days to mice before concanavalin A-induced AIH model establishment. Histopathological, immunohistochemical, immunofluorescence, western blotting, ELISA, 16S rRNA analysis, flow cytometry, real-time quantitative PCR, and fecal microbiota transplantation studies were performed to ascertain BBR effects and mechanisms in AIH mice. RESULTS: We found that liver necrosis and apoptosis were decreased upon BBR administration; the levels of serum transaminase, serum lipopolysaccharide, liver proinflammatory factors TNF-α, interferon-γ, IL-1ß, and IL-17A, and the proportion of Th17 cells in spleen cells were all reduced, while the anti-inflammatory factor IL-10 and regulatory T cell proportions were increased. Moreover, BBR treatment increased beneficial and reduced harmful bacteria in the gut. BBR also strengthened ileal barrier function by increasing the expression of the tight junction proteins zonula occludens-1 and occludin, thereby blocking lipopolysaccharide translocation, preventing lipopolysaccharide/toll-like receptor 4 (TLR4)/ NF-κB pathway activation, and inhibiting inflammatory factor production in the liver. Fecal microbiota transplantation from BBR to model mice also showed that BBR potentially alleviated AIH by altering the gut microbiota. CONCLUSIONS: BBR alleviated concanavalin A-induced AIH by modulating the gut microbiota and related immune regulation. These results shed more light on potential BBR therapeutic strategies for AIH.


Assuntos
Berberina , Microbioma Gastrointestinal , Hepatite A , Hepatite Autoimune , Camundongos , Animais , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/etiologia , Berberina/farmacologia , Berberina/uso terapêutico , Concanavalina A/farmacologia , Lipopolissacarídeos/farmacologia , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...