Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
1.
Theranostics ; 14(9): 3565-3582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948069

RESUMO

Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Inibidores de Histona Desacetilases , Neoplasias da Próstata , Fosfatases cdc25 , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Animais , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fosfatases cdc25/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Selênio/farmacologia , Selênio/química , Selênio/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Camundongos Endogâmicos BALB C
2.
Environ Int ; 190: 108827, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38908274

RESUMO

Triclosan is a potent antibacterial compound widely used in everyday products. Whether triclosan affects Leydig cell function in adult male rats remains unknown. In this study, 0, 50, 100, or 200 mg/kg/day triclosan was gavaged to Sprague-Dawley male rats from 56 to 63 days postpartum. Triclosan significantly reduced serum testosterone levels at ≥ 50 mg/kg/day via downregulating the expression of Leydig cell gene Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3 and regulatory transcription factor Nr3c2 at 100-200 mg/kg. Further analysis showed that triclosan markedly increased autophagy as shown by increasing LC3II and BECN1 and decreasing SQSTM1. The mRNA m6A modification analysis revealed that triclosan significantly downregulated Fto expression at 200 mg/kg while upregulating Ythdf1 expression at 100 and 200 mg/kg, leading to methylation of Becn1 mRNA as shown by MeRIP assay. Triclosan significantly inhibited testosterone output in rat R2C Leydig cells at ≥ 5 µM via downregulating Fto and upregulating Ythdf1. SiRNA Ythdf1 knockdown can reverse triclosan-mediated mitophagy in R2C cells, thereby reversing the reduction of testosterone output. In summary, triclosan caused Becn1 m6A methylation by downregulating Fto and upregulating Ythdf1, which accelerated Becn1 translation, thus leading to the occurrence of autophagy and the decrease of testosterone biosynthesis.

3.
Toxicol Appl Pharmacol ; 486: 116942, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692360

RESUMO

Organotins have been widely used in various industrial applications. This study investigated the structure-activity relationship as inhibitors of human, pig, and rat gonadal 3ß-hydroxysteroid dehydrogenases (3ß-HSD). Human KGN cell, pig, and rat testis microsomes were utilized to assess the inhibitory effects of 18 organotins on the conversion of pregnenolone to progesterone. Among them, diphenyltin, triethyltin, and triphenyltin exhibited significant inhibitory activity against human 3ß-HSD2 with IC50 values of 114.79, 106.98, and 5.40 µM, respectively. For pig 3ß-HSD, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin demonstrated inhibitory effects with IC50 values of 172.00, 100.19, 87.00, 5.75, and 1.65 µM, respectively. Similarly, for rat 3ß-HSD1, dipropyltin, diphenyltin, triethyltin, tributyltin, and triphenyltin displayed inhibitory activity with IC50 values of 81.35, 43.56, 55.55, 4.09, and 0.035 µM, respectively. They were mixed inhibitors of pig and rat 3ß-HSD, while triphenyltin was identified as a competitive inhibitor of human 3ß-HSD2. The mechanism underlying the inhibition of organotins on 3ß-HSD was explored, revealing that they may disrupt the enzyme activity by binding to cysteine residues in the catalytic sites. This proposition was supported by the observation that the addition of dithiothreitol reversed the inhibition caused by all organotins except for triethyltin, which was partially reversed. In conclusion, this study provides valuable insights into the structure-activity relationship of organotins as inhibitors of human, pig, and rat gonadal 3ß-HSD. The mechanistic investigation suggests that these compounds likely exert their inhibitory effects through binding to cysteine residues in the catalytic sites.


Assuntos
Inibidores Enzimáticos , Compostos Orgânicos de Estanho , Testículo , Animais , Humanos , Relação Estrutura-Atividade , Compostos Orgânicos de Estanho/farmacologia , Compostos Orgânicos de Estanho/química , Ratos , Masculino , Testículo/enzimologia , Testículo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Suínos , 3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 3-Hidroxiesteroide Desidrogenases/metabolismo , Simulação de Acoplamento Molecular , Progesterona/farmacologia , Progesterona/metabolismo , Microssomos/enzimologia , Microssomos/efeitos dos fármacos , Ratos Sprague-Dawley
4.
Angew Chem Int Ed Engl ; : e202408412, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801019

RESUMO

The practical application of the electrocatalytic CO2 reduction reaction (CO2RR) to form formic acid fuel is hindered by the limited activation of CO2 molecules and the lack of universal feasibility across different pH levels. Herein, we report a doping-engineered bismuth sulfide pre-catalyst (BiS-1) that S is partially retained after electrochemical reconstruction into metallic Bi for CO2RR to formate/formic acid with ultrahigh performance across a wide pH range. The best BiS-1 maintains a Faraday efficiency (FE) of ~95 % at 2000 mA cm-2 in a flow cell under neutral and alkaline solutions. Furthermore, the BiS-1 catalyst shows unprecedentedly high FE (~95 %) with current densities from 100 to 1300 mA cm-2 under acidic solutions. Notably, the current density can reach 700 mA cm-2 while maintaining a FE of above 90 % in a membrane electrode assembly electrolyzer and operate stably for 150 h at 200 mA cm-2. In situ spectra and density functional theory calculations reveals that the S doping modulates the electronic structure of Bi and effectively promotes the formation of the HCOO* intermediate for formate/formic acid generation. This work develops the efficient and stable electrocatalysts for sustainable formate/formic acid production.

5.
Small ; : e2401346, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700047

RESUMO

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

6.
Mol Carcinog ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801356

RESUMO

Curcumin has been shown to have antitumor properties, but its low potency and bioavailability has limited its clinical application. We designed a novel curcuminoid, [1-propyl-3,5-bis(2-bromobenzylidene)-4-piperidinone] (PBPD), which has higher antitumor strength and improves bioavailability. Cell counting kit-8 was used to detect cell activity. Transwell assay was used to detect cell invasion and migration ability. Western blot and quantitative polymerase chain reaction were used to detect protein levels and their messenger RNA expression. Immunofluorescence was used to detect the protein location. PBPD significantly inhibited the proliferation of cervical cancer cells, with an IC50 value of 4.16 µM for Hela cells and 3.78 µM for SiHa cells, leading to the induction of cuproptosis. Transcriptome sequencing analysis revealed that PBPD significantly inhibited the Notch1/Recombination Signal Binding Protein for Immunoglobulin kappa J Region (RBP-J) and nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathways while upregulating ferredoxin 1 (FDX1) expression. Knockdown of Notch1 or RBP-J significantly inhibited NRF2 expression and upregulated FDX1 expression, leading to the inhibition of nicotinamide adenine dinucleotide phosphate activity and the induction of oxidative stress, which in turn activated endoplasmic reticulum stress and induced cell death. The overexpression of Notch1 or RBP-J resulted in the enrichment of RBP-J within the NRF2 promoter region, thereby stimulating NRF2 transcription. NRF2 knockdown resulted in increase in FDX1 expression, leading to cuproptosis. In addition, PBPD inhibited the acidification of tumor niche and reduced cell metabolism to inhibit cervical cancer cell invasion and migration. In conclusion, PBPD significantly inhibits the proliferation, invasion, and migration of cervical cancer cells and may be a novel potential drug candidate for treatment of cervical cancer.

7.
Chem Biol Interact ; 394: 110987, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574835

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are widely used synthetic chemicals that persist in the environment and bioaccumulate in animals and humans. There is growing evidence that PFAS exposure adversely impacts neurodevelopment and neurological health. Steroid 5α-reductase 1 (SRD5A1) plays a key role in neurosteroidogenesis by catalyzing the conversion of testosterone or pregnenolone to neuroactive steroids, which influence neural development, cognition, mood, and behavior. This study investigated the inhibitory strength and binding interactions of 18 PFAS on human and rat SRD5A1 activity using enzyme assays, molecular docking, and structure-activity relationship analysis. Results revealed that C9-C14 PFAS carboxylic acid at 100 µM significantly inhibited human SRD5A1, with IC50 values ranged from 10.99 µM (C11) to 105.01 µM (C14), and only one PFAS sulfonic acid (C8S) significantly inhibited human SRD5A1 activity, with IC50 value of 8.15 µM. For rat SRD5A1, C9-C14 PFAS inhibited rat SRD5A1, showing the similar trend, depending on carbon number of the carbon chain. PFAS inhibit human and rat SRD5A1 in a carbon chain length-dependent manner, with optimal inhibition around C11. Kinetic studies indicated PFAS acted through mixed inhibition. Molecular docking revealed PFAS bind to the domain between NADPH and testosterone binding site of both SRD5A1 enzymes. Inhibitory potency correlated with physicochemical properties like carbon number of the carbon chain. These findings suggest PFAS may disrupt neurosteroid synthesis and provide insight into structure-based inhibition of SRD5A1.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Simulação de Acoplamento Molecular , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/química , Animais , Humanos , Ratos , Relação Estrutura-Atividade , Proteínas de Membrana/metabolismo , Fluorocarbonos/química , Fluorocarbonos/metabolismo , Fluorocarbonos/farmacologia , Ligação Proteica , Carbono/química , Carbono/metabolismo , Sítios de Ligação
8.
J Agric Food Chem ; 72(18): 10616-10626, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656193

RESUMO

Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 µM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.


Assuntos
Células Intersticiais do Testículo , Mitocôndrias , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos Sprague-Dawley , Tricotecenos , Animais , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Ratos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/citologia , Tricotecenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testosterona/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos
9.
Ecotoxicol Environ Saf ; 277: 116391, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678792

RESUMO

Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750 mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750 mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.


Assuntos
Dietilexilftalato , Regulação para Baixo , Epigênese Genética , Células Intersticiais do Testículo , Metiltransferases , Efeitos Tardios da Exposição Pré-Natal , Testosterona , Animais , Feminino , Masculino , Gravidez , Ratos , Adenosina/análogos & derivados , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Dietilexilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Metiltransferases/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos Sprague-Dawley , Testosterona/sangue
10.
Artigo em Inglês | MEDLINE | ID: mdl-38518984

RESUMO

Benzophenone chemicals (BPs) have been developed to prevent the adverse effects of UV radiation and they are widely contaminated. 11ß-Hydroxysteroid dehydrogenase 1 (11ß-HSD1) catalyze the conversion of inactive glucocorticoid to active glucocorticoid, playing critical role in many physiological function. However, the direct effect of BPs on human, pig, rat, and mouse 11ß-HSD1 remains unclear. In this study, we screened the inhibitory strength of 12 BPs on 4 species, and performed the structure-activity relationship (SAR) and in silico docking analysis. The inhibitory potency of BPs was: for human 11ß-HSD1, BP6 (IC50 = 18.76 µM) > BP8 (40.84 µM) > BP (88.89 µM) > other BPs; for pig 11ß-HSD1, BP8 (45.57 µM) > BP6 (59.44 µM) > BP2 (65.12 µM) > BP (135.56 µM) > other BPs; for rat 11ß-HSD1, BP7 (67.17 µM) > BP (68.83 µM) > BP8 (133.04 µM) > other BPs; and for mouse 11ß-HSD1, BP8 (41.41 µM) > BP (50.61 µM) > other BPs. These BP chemicals were mixed/competitive inhibitors of these 11ß-HSD1 enzymes. The 2,2'-dihydroxy substitutions in two benzene rings play a key role in enhancing the effectiveness of inhibiting 11ß-HSD1, possibly via increasing hydrogen bond interactions. Docking analysis shows that these BPs bind to NADPH/glucocorticoid binding sites and forms hydrogen bonds with catalytic residues Ser and/or Tyr. In conclusion, this study demonstrates that BP chemicals can inhibit 11ß-HSD1 from 4 species, and there are subtle species-dependent difference in the inhibitory strength and structural variations of BPs.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Benzofenonas , Simulação de Acoplamento Molecular , Animais , Benzofenonas/química , Benzofenonas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Humanos , Relação Estrutura-Atividade , Ratos , Camundongos , Suínos , Protetores Solares/química , Protetores Solares/farmacologia , Protetores Solares/toxicidade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Especificidade da Espécie , Raios Ultravioleta
11.
Toxicol Lett ; 395: 40-49, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555059

RESUMO

Pentachlorophenol (PCP) is a widely used pesticide. However, whether PCP and its metabolite chloranil have endocrine-disrupting effects by inhibiting placental 3ß-hydroxysteroid dehydrogenase 1 (3ß-HSD1) remains unclear. The study used in vitro assays with human and rat placental microsomes to measure 3ß-HSD activity as well as human JAr cells to evaluate progesterone production. The results showed that PCP exhibited moderate inhibition of human 3ß-HSD1, with an IC50 value of 29.83 µM and displayed mixed inhibition in terms of mode of action. Conversely, chloranil proved to be a potent inhibitor, demonstrating an IC50 value of 147 nM, and displaying a mixed mode of action. PCP significantly decreased progesterone production by JAr cells at 50 µM, while chloranil markedly reduced progesterone production at ≥1 µM. Interestingly, PCP and chloranil moderately inhibited rat placental homolog 3ß-HSD4, with IC50 values of 27.94 and 23.42 µM, respectively. Dithiothreitol (DTT) alone significantly increased human 3ß-HSD1 activity. Chloranil not PCP mediated inhibition of human 3ß-HSD1 activity was completely reversed by DTT and that of rat 3ß-HSD4 was partially reversed by DTT. Docking analysis revealed that both PCP and chloranil can bind to the catalytic domain of 3ß-HSDs. The difference in the amino acid residue Cys83 in human 3ß-HSD1 may explain why chloranil is a potent inhibitor through its interaction with the cysteine residue of human 3ß-HSD1. In conclusion, PCP is metabolically activated to chloranil as a potent inhibitor of human 3ß-HSD1.


Assuntos
Pentaclorofenol , Placenta , Humanos , Feminino , Ratos , Gravidez , Animais , Placenta/metabolismo , Pentaclorofenol/toxicidade , Pentaclorofenol/metabolismo , Cloranila/metabolismo , Progesterona/metabolismo , Ativação Metabólica , Modelos Moleculares , Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases
12.
Ecotoxicol Environ Saf ; 273: 116173, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452703

RESUMO

Per- and polyfluoroalkyl (PFAS) substances are enduring industrial materials. 17ß-Hydroxysteroid dehydrogenase isoform 1 (17ß-HSD1) is an estrogen metabolizing enzyme, which transforms estrone into estradiol in human placenta and rat ovary. Whether PFAS inhibit 17ß-HSD1 and what the structure-activity relationship (SAR) remains unexplored. We screened 18 PFAS for inhibiting human and rat 17ß-HSD1 in microsomes and studied their SAR and mode of action(MOA). Of the 11 perfluorocarboxylic acids (PFCAs), C8-C14 PFCAs at a concentration of 100 µM substantially inhibited human 17ß-HSD1, with order of C11 (half-maximal inhibition concentration, IC50, 8.94 µM) > C10 (10.52 µM) > C12 (14.90 µM) > C13 (30.97 µM) > C9 (43.20 µM) > C14 (44.83 µM) > C8 (73.38 µM) > others. Of the 7 per- and poly-fluorosulfonic acids (PFSAs), the potency was C8S (IC50, 14.93 µM) > C7S (80.70 µM) > C6S (177.80 µM) > others. Of the PFCAs, C8-C14 PFCAs at 100 µM markedly reduced rat 17ß-HSD1 activity, with order of C11 (IC50, 9.11 µM) > C12 (14.30 µM) > C10 (18.24 µM) > C13 (25.61 µM) > C9 (67.96 µM) > C8 (204.39 µM) > others. Of the PFSAs, the potency was C8S (IC50, 37.19 µM) > C7S (49.38 µM) > others. In contrast to PFOS (C6S), the partially fluorinated compound 6:2 FTS with an equivalent number of carbon atoms demonstrated no inhibition of human and rat 17ß-HSD1 activity at a concentration of 100 µM. The inhibition of human and rat enzymes by PFAS followed a V-shaped trend from C4 to C14, with a nadir at C11. Moreover, human 17ß-HSD1 was more sensitive than rat enzyme. PFAS inhibited human and rat 17ß-HSD1 in a mixed mode. Docking analysis revealed that they bind to the NADPH and steroid binding site of both 17ß-HSD1 enzymes. The 3D quantitative SAR (3D-QSAR) showed that hydrophobic region, hydrogen bond acceptor and donor are key factors in binding to 17ß-HSD1 active sites. In conclusion, PFAS exhibit inhibitory effects on human and rat 17ß-HSD1 depending on factors such as carbon chain length, degree of fluorination, and the presence of carboxylic acid or sulfonic acid groups, with a notable V-shaped shift observed at C11.


Assuntos
Fluorocarbonos , Relação Quantitativa Estrutura-Atividade , Gravidez , Feminino , Humanos , Animais , Ratos , Simulação de Acoplamento Molecular , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , Estrona , Carbono , Fluorocarbonos/toxicidade
13.
J Steroid Biochem Mol Biol ; 240: 106510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508472

RESUMO

The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17ß-HSD1 were 21.37, 73.25, 92.80, and 117.69 µM. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100 µM. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14 µM. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17ß-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17ß-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17ß-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone production.


Assuntos
Hidrocarbonetos Clorados , Simulação de Acoplamento Molecular , Praguicidas , Animais , Humanos , Ratos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/farmacologia , Relação Estrutura-Atividade , Feminino , Praguicidas/química , Praguicidas/metabolismo , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/química , Gravidez , Placenta/metabolismo , Estradiol/metabolismo , Estradiol/química , Inseticidas/química , Inseticidas/farmacologia
14.
Sheng Li Xue Bao ; 76(1): 45-51, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38444130

RESUMO

The present study aims to investigate the effect of cathepsin K (CatK) on ischemic angiogenesis in high-fat diet fed mice. The mice were subjected to unilateral hindlimb ischemic surgery, and the ischemic blood flow was measured with a laser Doppler blood flow imager. Immunohistochemical staining was used to observe the quantity of new capillaries in the ischemic lower extremity, and Western blot was used to detect the expression of insulin receptor substrate-1 (IRS-1), p-Akt, Akt and vascular endothelial growth factor (VEGF). Firstly, the effect of high-fat diet on ischemic angiogenesis was observed in wild-type mice, which were randomly divided into control group and high-fat diet group and were fed with normal diet or 60% high-fat diet respectively for 16 weeks. The results showed the body weight and the plasma CatK concentration of the high-fat diet group was significantly increased compared with the control group (P < 0.05), and the blood flow recovery of the high-fat diet group was significantly lower than control group (P < 0.05). Then, wild-type and CatK knock out (CatK-/-) mice were both fed with high-fat diet to further observe the effect and mechanism of CatK on ischemic angiogenesis under high-fat diet. The results showed that the blood flow recovery in the CatK-/- group was significantly greater than the wild-type group, and the number of CD31 positive cells was significantly increased (P < 0.05). At the same time, the protein expression levels of IRS-1, p-Akt and VEGF in the ischemic skeletal muscle were significantly increased in the CatK-/- group compared with the wild-type group (P < 0.05). These results suggest that the deficiency of CatK improves ischemic angiogenesis in high-fat diet fed mice through IRS-1-Akt-VEGF signaling pathway.


Assuntos
Dieta Hiperlipídica , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Angiogênese , Catepsina K , Dieta Hiperlipídica/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/genética , Fator A de Crescimento do Endotélio Vascular/genética
15.
Virol J ; 21(1): 77, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555445

RESUMO

PURPOSE: The purpose of this study was to investigate immunological variations between a group that received the hepatitis B vaccine and a non-vaccine group. We focused on a cohort that achieved HBsAg seroclearance after Peg-IFNα treatment of CHB. METHODS: We enrolled twenty-eight individuals who achieved HBsAg seroclearance after Peg-IFNα treatment. They were divided into two groups: a vaccine group (n = 14) and a non-vaccine group (n = 14). We assessed lymphocyte subpopulations, B cell- and T cell-surface costimulatory/inhibitory factors, cytokines and immunoglobulin levels were detected at different time points to explore immune-function differences between both groups. RESULTS: The seroconversion rate in the vaccine group at 24 weeks post-vaccination was 100%, which was significantly higher (p = 0.006) than that of the non-vaccine group (50%). Additionally, more individuals in the vaccine group exhibited anti-HBs levels exceeding 100 IUs/L and 300 IUs/L compared to the non-vaccine group (p < 0.05). The vaccine group demonstrated significantly increase total B cells and class-switched B cells at 24 weeks and plasma cells, CD80+B cells, Tfh cells, and ICOS+Tfh cell at 12 weeks, compared with baseline levels (p < 0.05). Conversely, Bregs (CD24+CD27+ and CD24+CD38high) decreased significantly at 24 weeks (p < 0.05). None of the above changes were statistically significance in the non-vaccine group (p > 0.05). Total IgG increased significantly in the vaccine group, and IL-2, IL-5, and IL-6 concentrations increased significantly at week 24 (p < 0.05). Differences in various types of cytokines and immunoglobulins in the plasma of the non-vaccine group were not significant (p > 0.05). Anti-HBs titers positively correlated with Th1/Th2 cells at 24 weeks (r = 0.448 and 0.458, respectively, p = 0.022 and 0.019, respectively), and negatively with CD24+CD38highBreg cells (r = -0.402, p = 0.042). CONCLUSIONS: After achieving HBsAg seroclearance through Peg-IFNα treatment for CHB, administering the hepatitis B vaccine significantly increased anti-HBs-seroconversion rates and antibody levels. We also observed significant immunological differences between the vaccine and non-vaccine groups. Specifically, the vaccine group exhibited significant increases in B cells, plasma cells, and Tfh cells, while Breg levels was significantly lower. These immunological changes are likely conducive to the production of anti-HBs antibodies. However, in the non-vaccine group, the observed changes were not significantlly significant.


Assuntos
Antígenos de Superfície da Hepatite B , Hepatite B Crônica , Humanos , Interferon-alfa/uso terapêutico , Soroconversão , Hepatite B Crônica/tratamento farmacológico , Vacinas contra Hepatite B/uso terapêutico , Citocinas , Anticorpos Anti-Hepatite B , Vacinação , Imunidade , Antígenos E da Hepatite B , Antivirais/uso terapêutico , Polietilenoglicóis/uso terapêutico
16.
Support Care Cancer ; 32(3): 166, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372773

RESUMO

PURPOSE: The aim of this study was to investigate the comprehensive needs of lung cancer patients treated with immune checkpoint inhibitors and to explore the relationships between comprehensive needs and social support and disease perception, moreover, to analyse associated factors of comprehensive needs. METHODS: The study was conducted in a teaching hospital in Jiaxing Province, China. A total of 141 patients with lung cancer completed a battery of self-report questionnaires, including the Comprehensive Needs Assessment Tool in Cancer for Patients (CNAT), Social Supportive Rating Scale (SSRS), Brief Illness Perception Questionnaire (BIPQ), and demographic and clinical characteristics questionnaire. RESULTS: The level of comprehensive needs was highest in the domain "medical demand" (42.17 ± 26.57), and the item with the highest level of comprehensive needs was "I need information about the financial support for my medical expenses" (2.00 ± 1.07). Statistically significant correlations were identified between the comprehensive needs score, social support, and disease perception. The multiple regression analysis showed that immunotherapy course, whether irAEs occur, social support, and disease perception were factors influencing patients' comprehensive needs. CONCLUSIONS: The most prevalent needs in lung cancer patients were found in the "medical needs" domain. Additionally, immunotherapy course, whether irAEs occur, disease perception, and social support were associated with comprehensive needs among lung cancer patients. It is essential to combine the associated factors to accurately evaluate patient needs. We should pay more attention to proposing the comprehensive measures for these patients and providing more individualized supportive care during the lengthy treatment period.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Estudos Transversais , Inibidores de Checkpoint Imunológico , Apoio Social , Hospitais de Ensino , Percepção
17.
Food Chem Toxicol ; 186: 114489, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360388

RESUMO

Curcuminoids have many pharmacological effects. They or their metabolites may have side effects by suppressing 17ß-hydroxysteroid dehydrogenase 3 (17ß-HSD3). Herein, we investigated the inhibition of curcuminoids and their metabolites on human and rat 17ß-HSD3 and analyzed their structure-activity relationship (SAR) and performed in silico docking. Curcuminoids and their metabolites ranked in terms of IC50 values against human 17ß-HSD3 were bisdemethoxycurcumin (0.61 µM) > curcumin (8.63 µM) > demethoxycurcumin (9.59 µM) > tetrahydrocurcumin (22.04 µM) > cyclocurcumin (29.14 µM), and those against rat 17ß-HSD3 were bisdemethoxycurcumin (3.94 µM) > demethoxycurcumin (4.98 µM) > curcumin (9.62 µM) > tetrahydrocurcumin (45.82 µM) > cyclocurcumin (143.5 µM). The aforementioned chemicals were mixed inhibitors for both enzymes. Molecular docking analysis revealed that they bind to the domain between the androstenedione and NADPH active sites of 17ß-HSD3. Bivariate correlation analysis showed a positive correlation between LogP and pKa of curcumin derivatives with their IC50 values. Additionally, a 3D-QSAR analysis revealed that a pharmacophore model consisting of three hydrogen bond acceptor regions and one hydrogen bond donor region provided a better fit for bisdemethoxycurcumin compared to curcumin. In conclusion, curcuminoids and their metabolites possess the ability to inhibit androgen biosynthesis by directly targeting human and rat 17ß-HSD3. The inhibitory strength of these compounds is influenced by their lipophilicity and ionization characteristics.


Assuntos
17-Hidroxiesteroide Desidrogenases , Curcumina , Curcumina/análogos & derivados , Diarileptanoides , Piranos , Humanos , Ratos , Animais , Curcumina/farmacologia , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
18.
Environ Toxicol ; 39(5): 2560-2571, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38189224

RESUMO

Chlorinated bisphenol A (BPA) derivatives are formed during chlorination process of drinking water, whereas bisphenol S (BPS) and brominated BPA and BPS (TBBPA and TBBPS) were synthesized for many industrial uses such as fire retardants. However, the effect of halogenated BPA and BPS derivatives on glucocorticoid metabolizing enzyme 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) remains unclear. The inhibitory effects of 6 BPA derivatives in the inhibition of human and rat 11ß-HSD1 were investigated. The potencies for inhibition on human 11ß-HSD1 were TBBPA (IC50, 3.87 µM) = monochloro BPA (MCBPA, 4.08 µM) = trichloro BPA (TrCBPA, 4.41 µM) > tetrachloro BPA (TCBPA, 9.75 µM) > TBBPS (>100 µM) = BPS (>100 µM), and those for rat 11ß-HSD1 were TrCBPA (IC50, 2.76 µM) = MCBPA (3.75 µM) > TBBPA (39.58 µM) > TCBPA = TBBPS = BPS. All these BPA derivatives are mixed/competitive inhibitors of both human and rat enzymes. Molecular docking studies predict that MCBPA, TrCBPA, TCBPA, and TBBPA all bind to the active site of human 11ß-HSD1, forming hydrogen bonds with catalytic residue Ser170 except TCBPA. Regression of the lowest binding energy with IC50 values revealed a significant inverse linear regression. In conclusion, halogenated BPA derivatives are mostly potent inhibitors of human and rat 11ß-HSD1, and there is structure-dependent inhibition.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Compostos Benzidrílicos , Fenóis , Bifenil Polibromatos , Humanos , Ratos , Animais , Simulação de Acoplamento Molecular , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Relação Estrutura-Atividade
19.
Environ Toxicol ; 39(5): 2610-2622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38205621

RESUMO

Perfluorotetradecanoic acid (PFTeDA) is a novel perfluoroalkyl substance that ubiquitously exists in the environment. However, whether PFTeDA affects adrenal cortex function remains unclear. Male Sprague-Dawley rats (age of 60 days) were daily administered with PFTeDA (0, 1, 5, and 10 mg/kg body weight) through gavage for 28 days. PFTeDA did not change body and adrenal gland weights. PFTeDA markedly elevated serum corticosterone level at 10 mg/kg but lowering serum aldosterone level at this dosage without influencing serum adrenocorticotropic hormone level. PFTeDA thickened zona fasciculata without affecting zona glomerulosa. PFTeDA remarkably upregulated the expression of corticosterone biosynthetic genes (Mc2r, Scarb1, Star, Cyp21, Cyp11b1, and Hsd11b1) and their proteins, whereas downregulating aldosterone biosynthetic enzyme Cyp11b2 and its protein, thereby distinctly altering their serum levels. PFTeDA markedly downregulated the expression of antioxidant genes (Sod1 and Sod2) and their proteins at 10 mg/kg. PFTeDA significantly decreased SIRT1/PGC1α and AMPK signaling while stimulating AKT1/mTOR signaling. Corticosterone significantly inhibited testosterone production by adult Leydig cells at >0.1 µM in vitro; however aldosterone significantly stimulated testosterone production at 0.1 nM. In conclusion, exposure to PFTeDA at male rat adulthood causes corticosterone excess and aldosterone deficiency via SIRT1/PGC1α, AMPK, and AKT1/mTOR signals, which in turn additively leads to testosterone deficiency.


Assuntos
Aldosterona , Corticosterona , Fluorocarbonos , Ratos , Masculino , Animais , Corticosterona/metabolismo , Aldosterona/metabolismo , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Testosterona
20.
Life Sci ; 338: 122406, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176583

RESUMO

AIMS: Curcumin is a natural compound and has good antitumor properties, but its clinical use is limited by its low bioavailability. We constructed the derivative CP41 (3,5-bis(2-chlorobenzylidene)-1-piperidin-4-one) by enhancing the bioavailability of curcumin while retaining its antitumor properties. MAIN METHODS: CCK-8 (Cell Counting Kit-8) was used to detect the effect of CP41 on cell proliferation; Western blotting, immunofluorescence, immunoprecipitation, quantitative PCR and enzyme-linked immunosorbent assay were used to evaluate the expression of subcutaneous tumor-related molecules in cells and mice. KEY FINDINGS: Our results showed that CP41 inhibited the proliferation of endometrial cancer cells by suppressing the proliferation of AN3CA and HEC-1-B cells. We found that CP41 significantly increased H3F3A and inhibited proteasome activity, which activated MAPK signaling and led to apoptosis. Further experiments showed that H3F3A is a potential target of CP41. Correlation analysis showed that H3F3A was positively correlated with the sensitivity to chemotherapeutic agents in endometrial cancer. CP41 significantly induced reactive oxygen species (ROS) levels and activated endoplasmic reticulum stress, which led to apoptosis. The safety profile of CP41 was also evaluated, and CP41 did not cause significant drug toxicity in mice. SIGNIFICANCE: CP41 showed stronger antitumor potency than curcumin, and its antitumor activity may be achieved by inducing ROS and activating H3F3A-mediated apoptosis.


Assuntos
Curcumina , Neoplasias do Endométrio , Animais , Feminino , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Curcumina/análogos & derivados , Curcumina/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Estresse do Retículo Endoplasmático , Estresse Oxidativo/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Piperidinas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...