Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Front Pharmacol ; 15: 1439678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268467

RESUMO

Osteoarthritis (OA) is the most prevalent cartilage degenerative and low-grade inflammatory disease of the whole joint. However, there are currently no FDA-approved drugs or global regulatory agency-approved treatments OA disease modification. Therefore, it's essential to explore novel effective therapeutic strategies for OA. In our study, we investigated the effects of AFK-PD, a novel pyridone agent, on the development of OA induced by destabilization of the medial meniscus (DMM) in vivo, and its impact on the function of chondrocytes treated with IL-1ß in vitro. Our results demonstrated AFK-PD alleviated OA progression through inhibiting cartilage degeneration, articular inflammation and osteophyte formation. Notably, AFK-PD inhibited chondrocyte inflammation and synovial macrophage M1 polarization, leading to the attenuation of articular inflammation. Additionally, AFK-PD promoted chondrocyte anabolism while mitigating catabolism and apoptosis, effectively inhibiting cartilage degeneration. Mechanistically, AFK-PD suppressed the expression of key signaling molecules involved in the MAPK pathway, such as p-ERK1/2 and p-JNK, as well as the NF-κB signaling molecule p-p65, in IL-1ß-induced chondrocytes. These findings suggest AFK-PD ameliorates the development of OA by protecting chondrocyte functions and inhibiting articular inflammation in chondrocytes and synovial macrophages. Overall, our study highlights AFK-PD as a promising therapeutic candidate for the treatment of OA.

2.
Shock ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162216

RESUMO

ABSTRACT: In natural disasters such as earthquakes and landslides, the main problem that wounded survivors are confronted with is Crush Syndrome (CS). The aim of this study was to explore more convenient and effective early treatment measures for it.In the present study, we investigated the protective effect of fasciotomy combined with different concentration of hypertonic saline flushing with CS rats. CS model was prepared by compressing the buttocks and both lowering limbs of rats with 7.5 kg dumbbell for 4 hours. The rats were divided into 10 groups, which were normal control group, model group, incision without flushing group, 0.45%, 0.9%, 3%, 5%, 7% saline group, 3%-0.45% and 7%-0.45% saline alternating flushing group respectively. 6 hours after the treatment, the blood was sampled for measurement of the potassium, calcium, AST, ALT, Cr, Urea, myoglobin, and lactic acid content. The blood flow of the compressed tissue and kidneys, the pathological changes of the kidneys and the survival rate of 3%-0.45% saline alternating flushing group were also observed.The experimental results showed that fasciotomy alone for treatment cannot improve the presentation of CS of rats. Instead, hypertonic saline flushing significantly improved the AST, ALT, Cr, Urea indices, blood flow of muscles and kidneys. It also enormously decreased the blood K+, myoglobin, lactic acid concentration and slight increased the blood Ca2+. Among them, alternating flushing with 3%-0.45% saline had the best therapeutic effect on CS. Finally, it can be found that 3%-0.45% saline treatment regimen dramatically raised the survival rate of CS rats.All in all, this study suggests that fasciotomy combined with hypertonic saline flushing is a good therapeutic approach for CS.

3.
Anal Methods ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206535

RESUMO

Lead ions (Pb2+) are a widely distributed and highly toxic heavy metal pollutant, which seriously threatens the environment, economy and human safety. Here, a label-free ratiometric fluorescent biosensor was constructed for Pb2+ detection using DNAzyme-driven target cycling and exonuclease III (Exo III)-mediated DNA cycling as a dual signal amplification strategy. The SYBR Green I (SGI) and N-methyl mesoporphyrin IX (NMM) used in this study are characterized by low cost, storage resistance, and short preparation time compared with conventional signaling probes labeled with fluorescent groups. Unlike the single-emission fluorescence strategy, monitoring the fluorescence intensity ratio of SGI and NMM can effectively reduce external interference to achieve accurate detection of Pb2+. DNAzyme structures on the surface of magnetic beads (MBs) can recognize Pb2+ and activate the target circulatory system to cleave single-stranded DNA (ssDNA). The ssDNA further initiated the Exo III-assisted DNA circulatory system to digest double-stranded DNA (dsDNA) and release guanine-rich G1. Finally, the fluorescence signals of SGI and NMM were weakened and enhanced, respectively. The sensing strategy achieved a wide linear range from 0.5 to 500 nM and a low limit of detection (LOD) of 26.4 pM. Furthermore, its anti-interference ability and potential applicability for Pb2+ detection in actual samples were verified. This work ingeniously combines the dual signal amplification strategy with the ratiometric sensing strategy constructed by structure-specific fluorescent dyes, which provides a promising method for constructing sensitive and accurate fluorescent biosensors.

4.
Bone Res ; 12(1): 47, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191757

RESUMO

While KRAS mutation is the leading cause of low survival rates in lung cancer bone metastasis patients, effective treatments are still lacking. Here, we identified homeobox C10 (HOXC10) as a lynchpin in pan-KRAS-mutant lung cancer bone metastasis. Through RNA-seq approach and patient tissue studies, we demonstrated that HOXC10 expression was dramatically increased. Genetic depletion of HOXC10 preferentially impeded cell proliferation and migration in vitro. The bioluminescence imaging and micro-CT results demonstrated that inhibition of HOXC10 significantly reduced bone metastasis of KRAS-mutant lung cancer in vivo. Mechanistically, the transcription factor HOXC10 activated NOD1/ERK signaling pathway to reprogram epithelial-mesenchymal transition (EMT) and bone microenvironment by activating the NOD1 promoter. Strikingly, inhibition of HOXC10 in combination with STAT3 inhibitor was effective against KRAS-mutant lung cancer bone metastasis by triggering ferroptosis. Taken together, these findings reveal that HOXC10 effectively alleviates pan-KRAS-mutant lung cancer with bone metastasis in the NOD1/ERK axis-dependent manner, and support further development of an effective combinatorial strategy for this kind of disease.


Assuntos
Neoplasias Ósseas , Proteínas de Homeodomínio , Neoplasias Pulmonares , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Animais , Camundongos , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/genética , Osteólise/genética , Osteólise/patologia , Transição Epitelial-Mesenquimal/genética , Feminino
5.
Poult Sci ; 103(10): 104058, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39094492

RESUMO

In chicken, primordial germ cells (PGC) are crucial for the preservation and manipulation of genetic resources in poultry production. The HiS and FAcs culture systems are two important methods for the in vitro cultivation of chicken PGCs. The purpose of this study was to compare and analyze the two cultivation systems for PGCs (His and FAcs culture systems) to assess their efficacy and applicability in supporting PGC growth, maintaining PGC characteristics, and lineage transmission ability. The study found that both HiS and FAcs culture systems could maintain the basic biological characteristics of chicken PGCs, including the simultaneous expression of pluripotency and reproductive marker genes, as well as the presence of abundant glycogen granules. Subsequently, we identified 2,145 differentially expressed genes (DEG) through RNA sequencing. GO and KEGG analysis revealed a large number of DEGs enriched in the cell adhesion and calcium ion binding pathways, and the analysis found that these genes maintained a higher level in HiS-PGCs. Further personalized analysis found that the regulatory genes for maintaining PGC pluripotency were highly expressed in HiS-PGCs, while germ cell-related genes showed similar expression in both systems. Additionally, through RNA sequencing data and cell proliferation ability, it was found that PGCs in the FAcs system had a higher proliferation rate and a faster cell cycle. Finally, it was discovered that the expression of cell migration-related genes was maintained at a higher level in HiS-PGCs, but the migration efficiency of HiS-PGCs did not show a significant difference compared to FAcs-PGCs. These results suggest that both HiS and FAcs culture systems can maintain the proliferation and basic characteristics of chicken PGCs, but differences exist in cell proliferation, pluripotency regulation, and cell adhesion. These findings provide new information for optimizing PGC cultivation systems and are important for the preservation and genetic improvement of chicken PGCs.

6.
Food Chem ; 460(Pt 3): 140739, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39116770

RESUMO

Citrinin (CIT) is a mycotoxin with nephrotoxicity and hepatotoxicity, presenting a significant threat to human health that is often overlooked. Therefore, a dual-signal mode (DPV and SWV) aptasensor for citrinin (CIT) detection was constructed based on tetrahedral DNA nanostructures (TDN) in this study. Furthermore, PtPdCo mesoporous nanozymes exhibit catalase-like catalytic functions, generating significant electrochemical signals through a Fenton-like reaction. Meanwhile their excellent Methylene Blue (MB) loading capability ensures independent dual signal outputs. The RecJf exonuclease-assisted (RecJf Exo-assisted) process can expand the linear detection range, enabling further amplification of the signal. Under optimized conditions, the constructed aptaensor exhibited excellent detection performance with limits of detection (LODs) of 7.67 × 10-3 ng·mL-1 (DPV mode) and 1.57 × 10-3 ng·mL-1 (SWV mode). Due to its multiple signal amplification and highly accurate dual-signal mode detection capability, this aptasensor shows promising potential for the in situ detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Citrinina , DNA , Técnicas Eletroquímicas , Contaminação de Alimentos , Limite de Detecção , Nanoestruturas , Citrinina/análise , Citrinina/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Nanoestruturas/química , Contaminação de Alimentos/análise , DNA/química , Platina/química
7.
Foods ; 13(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39063260

RESUMO

A novel electrochemical aptasensor was prepared for the simultaneous determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA). Composites of Au nanoparticles and polyethyleneimine-reduced graphene oxide (AuNPs/PEI-RGO) with good electrical conductivity and high specific surface area were employed as the supporting substrate, demonstrating the ability to provide more binding sites for aptamers and accelerate the electron transfer. Aptamers were immobilized on a AuNPs/PEI-RGO surface to specifically recognize AFB1 and OTA. A metal-organic framework of UiO-66-NH2 served as the signal carrier to load metal ions of Cu2+ and Pb2+, which facilitated the generation of independent current peaks and effectively improved the electrochemical signals. The prepared aptasensor exhibited sensitive current responses for AFB1 and OTA with a linear range of 0.01 to 1000 ng/mL, with detection limits of 6.2 ng/L for AFB1 and 3.7 ng/L for OTA, respectively. The aptasensor was applied to detect AFB1 and OTA in cereal samples, achieving results comparable with HPLC-MS, with recovery results from 92.5% to 104.1%. With these merits of high sensitivity and good selectivity and stability, the prepared aptasensor proved to be a powerful tool for evaluating contaminated cereals.

8.
Anal Chim Acta ; 1316: 342800, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969435

RESUMO

Heavy metal pollution in the environment has become a significant global concern due to its detrimental effects on human health and the environment. In this study, we report an electrochemical aptasensor for the simultaneous detection of Hg2+ and Pb2+. Gold nanoflower/polyethyleneimine-reduced graphene oxide (AuNFs/PEI-rGO) was introduced on the surface of a gold electrode to improve sensing performance. The aptasensor is based on the formation of a T-Hg2+-T mismatch structure and specific cleavage of the Pb2+-dependent DNAzyme, resulting in a dual signal generated by the Exo III specific digestion of methylene blue (MB) labeled at the 3' end of probe DNA-1 and the reduction of the substrate ascorbic acid (AA) catalyzed by the signal label. The decrease of MB signal and the increase of AA oxidation peak was used to indicate the content of Hg2+ and Pb2+, respectively, with detection limits of 0.11 pM (Hg2+) and 0.093 pM (Pb2+). The aptasensor was also used for detecting Hg2+ and Pb2+ in water samples with good recoveries. Overall, this electrochemical aptasensor shows promising potential for sensitive and selective detection of heavy metals in environmental samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Exodesoxirribonucleases , Chumbo , Mercúrio , Estruturas Metalorgânicas , Poluentes Químicos da Água , Mercúrio/análise , Chumbo/análise , Chumbo/química , Estruturas Metalorgânicas/química , Aptâmeros de Nucleotídeos/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Poluentes Químicos da Água/análise , Técnicas Biossensoriais/métodos , Grafite/química , Ouro/química , Limite de Detecção , Eletrodos , DNA Catalítico/química
9.
Int Immunopharmacol ; 138: 112601, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38971106

RESUMO

Osteoarthritis (OA) is a joint disease caused by inflammation of cartilage and synovial tissue. Suppressing the process of inflammatory reaction and the generation of oxidative stress is an effective strategy to alleviate the progression of OA. Liensinine is one of the main components of lotus seeds, which has anti-hypertensive and anti-arrhythmia activities. In this study, we aimed to determine the anti-inflammatory effect of liensinine in an OA. Here, we found that liensinine significantly inhibited the inflammatory response of SW1353 cells and primary chondrocytes by inhibiting the release of inflammatory cytokines and oxidative stress. Moreover, we showed that liensinine was able to inhibit the activation of the NF-κB signaling pathway in IL-1ß-induced SW1353 cells. Lastly, we found that liensinine significantly ameliorated cartilage damage and inflammatory response in papain-induced rats. Our study demonstrated a significant protective effect of liensinine against OA, which might be by inhibiting the activation of the NF-κB signaling pathway, and provide a new insight for the treatment of OA using liensinine.


Assuntos
Anti-Inflamatórios , Condrócitos , Interleucina-1beta , NF-kappa B , Osteoartrite , Animais , Humanos , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Condrócitos/efeitos dos fármacos , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Isoquinolinas , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Papaína , Fenóis , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
10.
Ecotoxicol Environ Saf ; 283: 116783, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39067076

RESUMO

Residues of herbicides with the extensive applications may impact the soil ecosystem and ultimately threaten agricultural sustainability. However, the effects of long-term herbicide residues on soil multifunctionality and the soil microbial community remain poorly understood. Here, we evaluated relationships between soil multifunctionality and soil microbial communities with residual herbicide concentrations by surveying and analyzing 62 black soil samples collected from an agricultural area in northeastern China. Total residual herbicide concentrations varied from 35 to 568 µg/kg in the soil samples. The response of soil multifunctionality to increasing residual herbicide concentrations exhibited an inverted U-shaped relationship with a peak at approximately 310 µg/kg, with net mineralized organic nitrogen (Nm) and total nitrogen (TN) exhibiting the same trend. Microbial community richness was significantly lower in soil samples with high residual herbicide concentrations (> 310 µg/kg, HG) compared to low residual herbicide concentrations (< 310 µg/kg, LG). In addition, the relative abundances of specific keystone microbial genera differed significantly between LG and HG: norank_f_Acetobacteraceae, norank_f_Caldilineaceae, Candidatus_Alysiosphaera, and Gonytrichum. The relative abundances of these genera were also significantly correlated with soil multifunctionality. Structural equation models (SEMs) further showed that herbicide residues influenced soil multifunctionality by affecting these specific keystone genera. Our study demonstrates that long-term herbicide residues significantly impact the multifunctionality of agricultural black soil, where low concentrations stimulate while high concentrations inhibit, underscoring the need for reasonable application of herbicides to maintain soil ecosystem health.


Assuntos
Herbicidas , Microbiologia do Solo , Poluentes do Solo , Solo , Herbicidas/análise , Herbicidas/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , China , Solo/química , Nitrogênio/análise , Monitoramento Ambiental , Microbiota/efeitos dos fármacos , Agricultura , Bactérias/efeitos dos fármacos , Resíduos de Praguicidas/análise , Ecossistema
11.
Bioresour Technol ; 404: 130918, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823562

RESUMO

Symbiosis between Glycine max and Bradyrhizobium diazoefficiens were used as a model system to investigate whether biohydrogen utilization promotes the transformation of the tetrachlorobiphenyl PCB77. Both a H2 uptake-positive (Hup+) strain (wild type) and a Hup- strain (a hupL deletion mutant) were inoculated into soybean nodules. Compared with Hup- nodules, Hup+ nodules increased dechlorination significantly by 61.1 % and reduced the accumulation of PCB77 in nodules by 37.7 % (p < 0.05). After exposure to nickel, an enhancer of uptake hydrogenase, dechlorination increased significantly by 2.2-fold, and the accumulation of PCB77 in nodules decreased by 54.4 % (p < 0.05). Furthermore, the tetrachlorobiphenyl transformation in the soybean root nodules was mainly testified to be mediated by nitrate reductase (encoded by the gene NR) for tetrachlorobiphenyl dechlorination and biphenyl-2,3-diol 1,2-dioxygenase (bphC) for biphenyl degradation. This study demonstrates for the first time that biohydrogen utilization has a beneficial effect on tetrachlorobiphenyl biotransformation in a legume-rhizobium symbiosis.


Assuntos
Glycine max , Hidrogênio , Bifenilos Policlorados , Simbiose , Bifenilos Policlorados/metabolismo , Simbiose/fisiologia , Glycine max/metabolismo , Glycine max/microbiologia , Hidrogênio/metabolismo , Rhizobium/fisiologia , Biotransformação , Bradyrhizobium/metabolismo , Bradyrhizobium/fisiologia , Biodegradação Ambiental
12.
J Environ Sci (China) ; 145: 50-63, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844323

RESUMO

Herbicides (HBCs) are extensively used in modern agriculture. However, their potential negative impacts on environmental media have emerged as a significant environmental concern. In this study, we employed positive matrix factorization (PMF) to identify the potential sources of HBCs. Furthermore, we utilized a multi-matrix ecological risk model to assess the risks associated with HBCs in both surface water and groundwater in the black soil region of Northeast China. The findings revealed that the levels of ∑15HBCs in surface water and groundwater ranged from 585.84 to 6466.96 ng/L and 4.80 to 11,774.64 ng/L, respectively. The PMF results indicated that surface runoff and erosion accounted for 50% of the total HBCs in water, serving as the primary sources. All tested HBCs exhibited acute risk values within acceptable levels. The risk index for the ∑15HBCs was categorized as "moderate risk" in 31% of the surface waters and 13% of the groundwaters. However, 4% of the groundwater sampling sites reached the "high risk" level. The chronic risk quotient of ∑15HBCs in surface water and groundwater was 92% and 62% at the "high risk" level, respectively. Interestingly, non-carcinogenic HBCs contributed more significantly to the ecotoxicology of the aquatic system than carcinogenic HBCs. This study provides comprehensive information on the legacy of HBCs in water bodies and emphasizes the potential risks posed by HBCs to aquatic systems. The results obtained from this study could help relevant management authorities in developing and implementing effective regulations to mitigate the ecological and environmental risks associated with HBCs.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Herbicidas , Poluentes Químicos da Água , China , Medição de Risco , Herbicidas/análise , Herbicidas/toxicidade , Poluentes Químicos da Água/análise , Água Subterrânea/química , Cidades
13.
Foods ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928787

RESUMO

In the realm of analysis, the lateral flow immunoassay (LFIA) is frequently utilized due to its capability to be fast and immediate. However, the biggest challenge of the LFIA is its low detection sensitivity and tolerance to matrix interference, making it impossible to enable accurate, qualitative analyses. In this study, we developed a new LFIA with higher affinity and sensitivity, based on a nanobody (G8-DIG) and CuS nanoflowers-Au (CuS NFs-Au), for the detection of aflatoxin B1 (AFB1) in maize. We synthesized the immunoprobe G8-DIG@CuS NFs-Au, stimulated the in situ development of Au nanoparticles (Au NPs) on Cu NFs by electrical displacement, and obtained Cu NFs-Au for fixing the G8-DIG. G8-DIG@CuS NFs-Au probe-based LFIAs may, in ideal circumstances, use a strip chromatography reader to accomplish sensitive quantitative detection and qualitative visualization. AFB1 has a detection range of 2.82-89.56 µg/L and a detection limit of 0.87 µg/L. When compared with an LFIA based on CuS NFs, this sensitivity is increased by 2.76 times. The practical application of this method in corn flour demonstrated a recovery rate of 81.7% to 117%. Therefore, CuS NFs-Au show great potential for detecting analytes.

14.
ACS Biomater Sci Eng ; 10(7): 4411-4424, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38913499

RESUMO

Diabetic bone defects, exacerbated by hyperglycemia-induced inflammation and oxidative stress, present significant therapeutic challenges. This study introduces a novel injectable scaffold, MgH2@PLGA/F-GM, consisting of foamed gelatin-methacryloyl (GelMA) and magnesium hydride (MgH2) microspheres encapsulated in poly(lactic-co-glycolic acid) (PLGA). This scaffold is uniquely suited for diabetic bone defects, conforming to complex shapes and fostering an environment conducive to tissue regeneration. As it degrades, Mg(OH)2 is released and dissolved by PLGA's acidic byproducts, releasing therapeutic Mg2+ ions. These ions are instrumental in macrophage phenotype modulation, inflammation reduction, and angiogenesis promotion, all vital for diabetic bone healing. Additionally, hydrogen (H2) released during degradation mitigates oxidative stress by diminishing reactive oxygen species (ROS). This multifaceted approach not only reduces ROS and inflammation but also enhances M2 macrophage polarization and cell migration, culminating in improved angiogenesis and bone repair. This scaffold presents an innovative strategy for addressing the complexities of diabetic bone defect treatment.


Assuntos
Gelatina , Hidrogéis , Hidrogênio , Magnésio , Gelatina/química , Magnésio/química , Hidrogênio/química , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Hidrogênio/administração & dosagem , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Regeneração Óssea/efeitos dos fármacos , Metacrilatos/química , Preparações de Ação Retardada/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Alicerces Teciduais/química , Espécies Reativas de Oxigênio/metabolismo , Células RAW 264.7 , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos
15.
J Mol Cell Biol ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796692

RESUMO

Intercellular communication can be mediated by direct cell-to-cell contact and indirect interactions through secretion of soluble chemokines, cytokines, and growth factors. Extracellular vesicles (EVs) have emerged as important mediators of cell-to-cell and cell-to-environment communications. EVs from tumor cells, immune cells, and stromal cells can remodel the tumor microenvironment and promote cancer cell survival, proliferation, metastasis, immune evasion, and therapeutic resistance. Most importantly, EVs as natural nanoparticles can be manipulated to serve as a potent delivery system for targeted cancer therapy. EVs can be engineered or modified to improve their ability to target tumors and deliver therapeutic substances, such as chemotherapeutic drugs, nucleic acids, and proteins, for the treatment of cancer. This review provides an overview of the biogenesis and recycling of EVs, discusses their roles in cancer development, and highlights their potential as a delivery system for targeted cancer therapy.

16.
Bioelectrochemistry ; 158: 108728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733721

RESUMO

Herein, an aptasensor based on a signal amplification strategy was developed for the sensitive detection of procymidone (PCM). AgPd nanoparticles/Polenimine Graphite oxide (AgPdNPs/PEI-GO) was weaned as electrode modification material to facilitate electron transport and increase the active sites on the electrode surface. Besides, Pt@Ni-Co nanoboxes (Pt@Ni-CoHNBs) were utilized to be carriers for signaling tags, after hollowing ZIF-67 and growing Pt, the resulting Pt@Ni-CoHNBs has a tremendous amounts of folds occurred on the surface, enables it to carry a larger quantity of thionine, thus amplify the detectable electrochemical signal. In the presence of PCM, the binding of PCM to the signal probe would trigger a change in electrical signal. The aptasensor was demonstrated with excellent sensitivity and a low detection limit of 0.98 pg·mL-1, along with a wide linear range of 1 µg·mL-1 to 1 pg·mL-1. Meanwhile, the specificity, stability and reproducibility of the constructed aptasensor were proved to be satisfactory.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Grafite , Limite de Detecção , Nanopartículas Metálicas , Paládio , Platina , Prata , Grafite/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Platina/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Paládio/química , Prata/química , Níquel/química , Polietilenoimina/química , Cobalto/química , Reprodutibilidade dos Testes
17.
Talanta ; 276: 126260, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759364

RESUMO

Lead ion pollution has become a serious public health concern worldwide. Therefore, sensitive detection of Pb2+ is critical to control lead pollution, assess risks, and safeguard the health of vulnerable populations. This study reports a highly sensitive labelling-free electrochemical aptasensor for Pb2+ detection. The aptasensor employs silver-platinum nanoparticles/graphene oxide (AgPt/GO) and Exonuclease III (Exo III) for signal amplification. GO provides high surface area and conductivity for immobilizing AgPt NPs, facilitating the immobilization of aptamer (Apt) probes on the electrode surface. Exo III enzymatically cleaves DNA strands on the electrode surface, releasing DNA segments to amplify the signal further. The synergistic amplification by AgPt/GO and ExoIII enables an extremely wide linear detection range of 0.05 pM-5 nM for Pb2+, with a low detection limit of 0.019 pM. Additionally, the G-quadruplex structure ensures excellent selectivity for Pb2+ detection, resulting in high reproducibility and stability of the aptasensor. The aptasensor was successfully applied to detect spiked Pb2+ in tap water samples, achieving recovery rates ranging from 96 to 108.4 %. By integrating nanomaterials, aptamers and enzymatic amplification, the aptasensor facilitates highly sensitive and selective detection of Pb2+, demonstrating potential for practical applications in environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Exodesoxirribonucleases , Grafite , Chumbo , Nanocompostos , Platina , Prata , Grafite/química , Chumbo/análise , Chumbo/química , Aptâmeros de Nucleotídeos/química , Exodesoxirribonucleases/química , Técnicas Eletroquímicas/métodos , Platina/química , Nanocompostos/química , Prata/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Poluentes Químicos da Água/análise , Água Potável/análise , Eletrodos , Quadruplex G
18.
J Environ Manage ; 360: 121114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754192

RESUMO

Indigenous soil microbial communities play a pivotal role in the in situ bioremediation of contaminated sites. However, research on the distribution characteristics of microbial communities at various soil depths remains limited. In particular, there is little information on the assembly of microbial communities, especially those with degradation potential, in the vadose and saturated zones of hydrocarbon-contaminated sites. In this study, 18 soil samples were collected from the vadose zone and saturated zone at a long-term hydrocarbon-contaminated site. The diversity, composition, and driving factors of assembly of the soil bacterial community were determined by high-throughput sequencing analysis. Species richness and diversity were significantly higher in the vadose zone soils than in the saturated zone soils. Significant differences in abundance at both the phylum and genus levels were observed between the two zones. Soil bacterial community assembly was driven by the combination of pollution stress and nutrients in the vadose zone but by nutrient limitations in the saturated zone. The abundance of dechlorinating bacteria was greater in the saturated zone soils than in the vadose zone soils. Compared with contaminant concentrations, nutrient levels had a more pronounced impact on the abundance of dechlorinating bacteria. In addition, the interactions among dechlorinating bacterial populations were stronger in the saturated zone soils than in the vadose zone soils. These findings underscore the importance of comprehensively understanding indigenous microbial communities, especially those with degradation potential, across different soil layers to devise specific, effective in situ bioremediation strategies for contaminated sites.


Assuntos
Bactérias , Biodegradação Ambiental , Hidrocarbonetos , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/metabolismo , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Solo/química
19.
Animals (Basel) ; 14(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731386

RESUMO

The utilization of chicken embryonic-derived pluripotent stem cell (PSC) lines is crucial in various fields, including growth and development, vaccine and protein production, and germplasm resource protection. However, the research foundation for chicken PSCs is relatively weak, and there are still challenges in establishing a stable and efficient PSC culture system. Therefore, this study aims to investigate the effects of the FGF2/ERK and WNT/ß-catenin signaling pathways, as well as different feeder layers, on the derivation and maintenance of chicken embryonic-derived PSCs. The results of this study demonstrate that the use of STO cells as feeder layers, along with the addition of FGF2, IWR-1, and XAV-939 (FIX), allows for the efficient derivation of chicken PSC-like cells. Under the FIX culture conditions, chicken PSCs express key pluripotency genes, such as POUV, SOX2, and NANOG, as well as specific proteins SSEA-1, C-KIT, and SOX2, indicating their pluripotent nature. Additionally, the embryoid body experiment confirms that these PSC-like cells can differentiate into cells of three germ layers in vitro, highlighting their potential for multilineage differentiation. Furthermore, this study reveals that chicken Eyal-Giladi and Kochav stage X blastodermal cells express genes related to the primed state of PSCs, and the FIX culture system established in this research maintains the expression of these genes in vitro. These findings contribute significantly to the understanding and optimization of chicken PSC culture conditions and provide a foundation for further exploration of the biomedical research and biotechnological applications of chicken PSCs.

20.
Mater Today Bio ; 26: 101051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38633867

RESUMO

Commonly, articular osteochondral tissue exists significant differences in physiological architecture, mechanical function, and biological microenvironment. However, the development of biomimetic scaffolds incorporating upper cartilage, middle tidemark-like, and lower subchondral bone layers for precise articular osteochondral repair remains elusive. This study proposed here a novel strategy to construct the trilayered biomimetic hydrogel scaffolds with dual-differential microenvironment of both mechanical and biological factors. The cartilage-specific microenvironment was achieved through the grafting of kartogenin (KGN) into gelatin via p-hydroxyphenylpropionic acid (HPA)-based enzyme crosslinking reaction as the upper cartilage layer. The bone-specific microenvironment was achieved through the grafting of atorvastatin (AT) into gelatin via dual-crosslinked network of both HP-based enzyme crosslinking and glycidyl methacrylate (GMA)-based photo-crosslinking reactions as the lower subchondral bone layer. The introduction of tidemark-like middle layer is conducive to the formation of well-defined cartilage-bone integrated architecture. The in vitro experiments demonstrated the significant mechanical difference of three layers, successful grafting of drugs, good cytocompatibility and tissue-specific induced function. The results of in vivo experiments also confirmed the mechanical difference of the trilayered bionic scaffold and the ability of inducing osteogenesis and chondrogenesis. Furthermore, the articular osteochondral defects were successfully repaired using the trilayered biomimetic hydrogel scaffolds by the activation of endogenous recovery, which offers a promising alternative for future clinical treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...