Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ann Med Surg (Lond) ; 85(11): 5469-5477, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915641

RESUMO

Xiaoqinglong decoction (XQLD) is widely used clinically in the treatment of childhood cough variant asthma (CVA). However, its potential mechanism is still unknown. In the present study, the authors investigate the biological network and signalling pathway of XQLD in treatment of childhood CVA using network pharmacology-based analysis and experimental validation. By using the Bioinformatics Analysis Tool Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) database, the authors confirmed the correlation between XQLD and asthma, and the authors screened 1338 potential target genes of Mahuang and Guizhi, the most active herbs in XQLD. By overlapping "Childhood asthma-related genes" of DisGeNET database, the authors identified 58 intersecting genes of Childhood asthma and 1338 target genes of Mahuang and Guizhi. The intersecting genes were used to construct the protein-to-protein interaction and performed Gene Ontology (GO) functional and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Gene Ontology enrichment analysis demonstrated 359 Biological Process terms, 16 Cellular Component terms, and 26 Molecular Function terms. Meantime, 75 terms of Kyoto Encyclopedia of Genes and Genomes signalling pathway were involved in enrichment analysis. These candidates showed a significant correlation with inflammatory response and positive regulation of tyrosine phosphorylation of STAT protein. In addition, XQLD treatment significantly upregulated serum interferon-γ expression, and downregulated serum interlukin-6 expression of CVA mice. XQLD treatment significantly inhibited phosphorylation of STAT3 in bronchial-lung tissues. Our data suggest that XQLD effectively alleviated bronchial-lung tissue damage in CVA mice and inhibited the body inflammatory response by regulating interlukin-6/STAT3 signalling pathway.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37138477

RESUMO

OBJECTIVE: The aim of this study is to explore the active ingredients of ECT and their targets for asthma and investigate the potential mechanism of ECT on asthma. METHODS: Firstly, the active ingredients and target of ECT were screened for BATMAN and TCMSP, and functional analysis was done via DAVID. Then, the animal model was induced by ovalbumin (OVA) and aluminum hydroxide. Eosinophil (EOS) counts, EOS active substance Eosinophilic cationic protein (ECP) and eotaxin levels were detected following the instruction. Pathological changes in lung tissue were examined by H&E staining and transmission electron microscopy. Interleukin (IL-4, IL-10, IL-13, TNF-α), TIgE and IgE levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA. Finally, the protein expression of the TGF-ß / STAT3 pathway to lung tissue was detected by Western Blot. RESULTS: A total of 450 compounds and 526 target genes were retrieved in Er Chen Tang. Functional analysis indicated that its treatment of asthma was associated with inflammatory factors and fibrosis. In the animal experiment, the results showed that ECT significantly regulated inflammatory cytokine (IL-4, IL-10, IL-13, TNF-α) levels in (P<0.05, P<0.01, reduced EOS number (P<0.05) and also ECP and Eotaxin levels in the blood (P<0.05) in BALF and/or plasma. Bronchial tissue injury was obviously improved on ECT treatment. Associated proteins in TGF-ß / STAT3 pathway were significantly regulated by ECT (P<0.05). CONCLUSION: This study originally provided evidence that the Er Chen Tang was effective in the treatment of asthma symptoms, and its underlying mechanism might be the regulation of inflammatory factor secretion and the TGF-ß/STAT3 signaling pathway.

3.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744135

RESUMO

Porous concrete is an energy absorption material, which has been widely used in civil engineering, traffic engineering and disaster reduction engineering. However, the effect of pore structure on the impact behavior of the porous concrete is lacked. In this study, a series of drop-weight impact tests were carried out on three typical types of porous concrete, i.e., concrete hollow brick (CHB), autoclaved aerated concrete (AAC) and foamed concrete (FC), to investigate the effect of pore structures on their impact behavior. For comparison, static load tests were also conducted as references. According to the damage to the samples, the developments of impact force, strain, contact stress-strain relationship and absorbed energy during drop-weight during the impact test were measured and analyzed. The results show that the ratio between the peak impact stress and compressive strength of CHB was 0.44, while that of AAC and FC increased to about 0.6, indicating that the small and uniform pore structure in AAC and FC had a higher resistance against impact load than the hollow cavity of CHB. In addition, the elastic recovery strain in AAC increased by about 0.2% and its strain at peak contact stress increased by about 160% for a comparison of CHB, implying that a small open pore structure could enhance ductility. Besides, the peak contact stress of FC was close to that of AAC during impact loading, while the strain at peak contact stress of FC increased by about 36% compared with AAC, revealing that the closed-pore structure could further enhance the deformation potential. Correspondingly, the energy absorption rates of CHB, AAC and FC were 85.9 kJ/s, 54.4 kJ/s and 49.7 kJ/s, respectively, where AAC decreased by about 58% compared with CHB, and FC decreased by about 10% compared with AAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...