Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Front Genet ; 15: 1362469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841724

RESUMO

The impact of common and rare variants in COVID-19 host genetics has been widely studied. In particular, in Fallerini et al. (Human genetics, 2022, 141, 147-173), common and rare variants were used to define an interpretable machine learning model for predicting COVID-19 severity. First, variants were converted into sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. After that, the Boolean features, selected by these logistic models, were combined into an Integrated PolyGenic Score (IPGS), which offers a very simple description of the contribution of host genetics in COVID-19 severity.. IPGS leads to an accuracy of 55%-60% on different cohorts, and, after a logistic regression with both IPGS and age as inputs, it leads to an accuracy of 75%. The goal of this paper is to improve the previous results, using not only the most informative Boolean features with respect to the genetic bases of severity but also the information on host organs involved in the disease. In this study, we generalize the IPGS adding a statistical weight for each organ, through the transformation of Boolean features into "Boolean quantum features," inspired by quantum mechanics. The organ coefficients were set via the application of the genetic algorithm PyGAD, and, after that, we defined two new integrated polygenic scores (IPGSph1 and IPGSph2). By applying a logistic regression with both IPGS, (IPGSph2 (or indifferently IPGSph1) and age as inputs, we reached an accuracy of 84%-86%, thus improving the results previously shown in Fallerini et al. (Human genetics, 2022, 141, 147-173) by a factor of 10%.

2.
Nat Commun ; 15(1): 5007, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866767

RESUMO

Polygenic scores (PGSs) offer the ability to predict genetic risk for complex diseases across the life course; a key benefit over short-term prediction models. To produce risk estimates relevant to clinical and public health decision-making, it is important to account for varying effects due to age and sex. Here, we develop a novel framework to estimate country-, age-, and sex-specific estimates of cumulative incidence stratified by PGS for 18 high-burden diseases. We integrate PGS associations from seven studies in four countries (N = 1,197,129) with disease incidences from the Global Burden of Disease. PGS has a significant sex-specific effect for asthma, hip osteoarthritis, gout, coronary heart disease and type 2 diabetes (T2D), with all but T2D exhibiting a larger effect in men. PGS has a larger effect in younger individuals for 13 diseases, with effects decreasing linearly with age. We show for breast cancer that, relative to individuals in the bottom 20% of polygenic risk, the top 5% attain an absolute risk for screening eligibility 16.3 years earlier. Our framework increases the generalizability of results from biobank studies and the accuracy of absolute risk estimates by appropriately accounting for age- and sex-specific PGS effects. Our results highlight the potential of PGS as a screening tool which may assist in the early prevention of common diseases.


Assuntos
Predisposição Genética para Doença , Herança Multifatorial , Humanos , Masculino , Feminino , Herança Multifatorial/genética , Incidência , Pessoa de Meia-Idade , Adulto , Idoso , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , Fatores de Risco , Medição de Risco/métodos , Carga Global da Doença , Fatores Sexuais , Fatores Etários
3.
Hum Mol Genet ; 33(14): 1229-1240, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38652285

RESUMO

Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous with hundreds of identified risk genes, most affecting only a few patients. Novel missense variants in these genes are being discovered as clinical exome sequencing is now routinely integrated into diagnosis, yet most of them are annotated as variants of uncertain significance (VUS). VUSs are a major roadblock in using patient genetics to inform clinical action. We developed a framework to characterize VUSs in Coiled-coil and C2 domain containing 1A (CC2D1A), a gene causing autosomal recessive ID with comorbid ASD in 40% of cases. We analyzed seven VUSs (p.Pro319Leu, p.Ser327Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, p.Arg886His and p.Glu910Lys) from four cases of individuals with ID and ASD. Variants were cloned and overexpressed in HEK293 individually and in their respective heterozygous combination. CC2D1A is a signaling scaffold that positively regulates PKA-CREB signaling by repressing phosphodiesterase 4D (PDE4D) to prevent cAMP degradation. After testing multiple parameters including direct interaction between PDE4D and CC2D1A, cAMP levels and CREB activation, we found that the most sensitive readout was CREB transcriptional activity using a luciferase assay. Compared to WT CC2D1A, five VUSs (p.Pro319Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, and p.Arg886His) led to significantly blunted response to forskolin induced CREB activation. This luciferase assay approach can be scaled up to annotate ~150 CC2D1A VUSs that are currently listed in ClinVar. Since CREB activation is a common denominator for multiple ASD/ID genes, our paradigm can also be adapted for their VUSs.


Assuntos
Transtorno do Espectro Autista , Predisposição Genética para Doença , Deficiência Intelectual , Humanos , Transtorno do Espectro Autista/genética , Células HEK293 , Deficiência Intelectual/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Sequenciamento do Exoma/métodos , Transdução de Sinais/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Feminino , Mutação de Sentido Incorreto/genética , AMP Cíclico/metabolismo , Anotação de Sequência Molecular
4.
Commun Med (Lond) ; 4(1): 63, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575714

RESUMO

BACKGROUND: Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS: We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS: Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS: These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.


It is known that people respond differently to vaccines. It has been proposed that differences in their genes might play a role. We studied the individual genetic makeup of 1351 people from Italy to see if there was a link between their genes and how well they responded to the BNT162b2 mRNA COVID-19 vaccine. We discovered certain genetic differences linked to higher levels of protection in those who got the vaccine. Our findings suggest that individual's genetic characteristics play a role in vaccine response. A larger population involving diverse ethnic backgrounds will need to be studied to confirm the generalizability of these findings. Better understanding of this could facilitate improved vaccine designs against new SARS-CoV-2 variants.

5.
Semin Arthritis Rheum ; 66: 152430, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554594

RESUMO

VEXAS syndrome is a recently described monogenic autoinflammatory disease capable of manifesting itself with a wide array of organs and tissues involvement. Orbital/ocular inflammatory manifestations are frequently described in VEXAS patients. The objective of this study is to further describe orbital/ocular conditions in VEXAS syndrome while investigating potential associations with other disease manifestations. In the present study, twenty-seven out of 59 (45.8 %) VEXAS patients showed an inflammatory orbital/ocular involvement during their clinical history. The most frequent orbital/ocular affections were represented by periorbital edema in 8 (13.6 %) cases, episcleritis in 5 (8.5 %) patients, scleritis in 5 (8.5 %) cases, uveitis in 4 (6.8 %) cases, conjunctivitis in 4 (6.8 %) cases, blepharitis in 3 (5.1 %) cases, orbital myositis in 2 (3.4 %) cases. A diagnosis of systemic immune-mediated disease was observed in 15 (55.6 %) cases, with relapsing polychondritis diagnosed in 12 patients. A significant association was observed between relapsing polychondritis and orbital/ocular involvement in VEXAS syndrome (Relative Risk: 2.37, 95 % C.I. 1.03-5.46, p = 0.048). Six deaths were observed in the whole cohort of patients after a median disease duration of 1.2 (IQR=5.35) years, 5 (83.3 %) of which showed orbital/ocular inflammatory involvement. In conclusion, this study confirms that orbital/ocular inflammatory involvement is a common finding in VEXAS patients, especially when relapsing polychondritis is diagnosed. This makes ophthalmologists a key figure in the diagnostic process of VEXAS syndrome. The high frequency of deaths observed in this study seems to suggest that patients with orbital/ocular involvement may require increased attention and more careful follow-up.


Assuntos
Sistema de Registros , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Doenças Orbitárias , Doenças Hereditárias Autoinflamatórias/diagnóstico , Oftalmopatias/epidemiologia , Criança , Idoso , Esclerite/epidemiologia , Esclerite/diagnóstico , Policondrite Recidivante/diagnóstico , Policondrite Recidivante/complicações , Policondrite Recidivante/epidemiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38459409

RESUMO

Since 2008, FOXG1 haploinsufficiency has been linked to a severe neurodevelopmental phenotype resembling Rett syndrome but with earlier onset. Most patients are unable to sit, walk, or speak. For years, FOXG1 sequencing was only prescribed in such severe cases, limiting insight into the full clinical spectrum associated with this gene. Next-generation sequencing (NGS) now enables unbiased diagnostics. Through the European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders, we gathered data from patients with heterozygous FOXG1 variants presenting a mild phenotype, defined as able to speak and walk independently. We also reviewed data from three previously reported patients meeting our criteria. We identified five new patients with pathogenic FOXG1 missense variants, primarily in the forkhead domain, showing varying nonspecific intellectual disability and developmental delay. These features are not typical of congenital Rett syndrome and were rarely associated with microcephaly and epilepsy. Our findings are consistent with a previous genotype-phenotype analysis by Mitter et al. suggesting the delineation of five different FOXG1 genotype groups. Milder phenotypes were associated with missense variants in the forkhead domain. This information may facilitate prognostic assessments in children carrying a FOXG1 variant and improve the interpretation of new variants identified with genomic sequencing.

8.
Sci Rep ; 14(1): 3000, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321133

RESUMO

The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.


Assuntos
COVID-19 , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , SARS-CoV-2 , Genótipo
14.
HLA ; 103(1): e15251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850268

RESUMO

Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.


Assuntos
COVID-19 , Cadeias beta de HLA-DP , Humanos , COVID-19/genética , SARS-CoV-2/genética , Alelos , Receptores KIR/genética , Genótipo , Autoanticorpos/genética
15.
PLoS One ; 18(11): e0293503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992053

RESUMO

Since 72% of rare diseases are genetic in origin and mostly paediatrics, genetic newborn screening represents a diagnostic "window of opportunity". Therefore, many gNBS initiatives started in different European countries. Screen4Care is a research project, which resulted of a joint effort between the European Union Commission and the European Federation of Pharmaceutical Industries and Associations. It focuses on genetic newborn screening and artificial intelligence-based tools which will be applied to a large European population of about 25.000 infants. The neonatal screening strategy will be based on targeted sequencing, while whole genome sequencing will be offered to all enrolled infants who may show early symptoms but have resulted negative at the targeted sequencing-based newborn screening. We will leverage artificial intelligence-based algorithms to identify patients using Electronic Health Records (EHR) and to build a repository "symptom checkers" for patients and healthcare providers. S4C will design an equitable, ethical, and sustainable framework for genetic newborn screening and new digital tools, corroborated by a large workout where legal, ethical, and social complexities will be addressed with the intent of making the framework highly and flexibly translatable into the diverse European health systems.


Assuntos
Triagem Neonatal , Doenças Raras , Recém-Nascido , Humanos , Criança , Triagem Neonatal/métodos , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Doenças Raras/genética , Inteligência Artificial , Tecnologia Digital , Europa (Continente)
16.
J Shoulder Elb Arthroplast ; 7: 24715492231211123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021086

RESUMO

Joint dysplasias always represent a great challenge for prosthetic surgeons. The common altered anatomical landmarks and the subversion of the anatomy of soft tissues surrounding the dysplastic joint are problems that can cause difficulties if approached with standard methods. Together with the resolution of functional issues related to dysplasia, the understanding of the underlying cause is fundamental. DNA analysis is generally performed via blood sampling; however, this might lead to misdiagnosis in case mosaicism is not detected in blood components. The etiology of genetic diseases can be further examined by means of whole exome sequencing and the detection of somatic mosaicism, recognized as a fundamental contributor to genetic diseases themselves. In this study, the clinical case of a patient suffering from a rare unilateral dysplasia localized to the left coxo-femoral and glenohumeral joint and treated at our center for reverse shoulder arthroplasty is reported. By virtue of the glenohumeral anatomical peculiarities, we had to devise a hybrid custom-made and navigated approach by means of a custom-made prosthetic stem and dedicated patient-specific instrumentation, using intraoperative GPS navigation for glenoid prosthesis. In addition, a genetic study was conducted on intraoperatively harvested bone marrow, which proved to be crucial in understanding the epigenetic basis of dysplasia. In fact, the patient resulted negative in blood but positive for a truncating variant of PTEN c.781C > T (p.(Gln261 *)) in 12% of the sequence analyzed in the bone marrow.

17.
Children (Basel) ; 10(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37761403

RESUMO

Pathogenic loss-of-function variants in the IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause intellectual disability with Rett syndrome (RTT)-like features. The aim of this study was to obtain systematic information on the natural history and extra-central nervous system (CNS) manifestations for the Italian IQSEC2 population (>90%) by using structured family interviews and semi-quantitative questionnaires. IQSEC2 encephalopathy prevalence estimate was 7.0 to 7.9 × 10-7. Criteria for typical RTT were met in 42.1% of the cases, although psychomotor regression was occasionally evidenced. Genetic diagnosis was occasionally achieved in infancy despite a clinical onset before the first 24 months of life. High severity in both the CNS and extra-CNS manifestations for the IQSEC2 patients was documented and related to a consistently adverse quality of life. Neurodevelopmental delay was diagnosed before the onset of epilepsy by 1.8 to 2.4 years. An earlier age at menarche in IQSEC2 female patients was reported. Sleep disturbance was highly prevalent (60 to 77.8%), with mandatory co-sleeping behavior (50% of the female patients) being related to de novo variant origin, younger age, taller height with underweight, better social interaction, and lower life quality impact for the family and friends area. In conclusion, the IQSEC2 encephalopathy is a rare and likely underdiagnosed developmental encephalopathy leading to an adverse life quality impact.

18.
Genes (Basel) ; 14(9)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37761826

RESUMO

Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.


Assuntos
Nefrite Hereditária , Insuficiência Renal , Pré-Escolar , Humanos , Animais , Camundongos , Pessoa de Meia-Idade , Adulto , Hematúria/genética , Nefrite Hereditária/genética , Colágeno Tipo IV/genética
19.
Front Genet ; 14: 1213283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662840

RESUMO

We report a case of Klippel Trenaunay Syndrome that was monitored both clinically and molecularly over a period of 9 years. A somatic mosaic mutation of PIK3CA (p(E545G)) was identified using both cfDNA NGS liquid biopsy and tissue biopsy. At the age of 56, due to intervening clonal mutations in PIK3CA background, she developed a squamous cell carcinoma in the right affected leg which was treated surgically. Nine years later, lung bilateral adenocarcinoma arose on PIK3CA mutated tissues supported by different clonal mutations. One year later, the patient died from metastases led by a new FGFR3 clone unresponsive to standard-of-care, immunotherapy-based. Our results highlight the presence of a molecular hallmark underlying neoplastic transformation that occurs upon an angiodysplastic process and support the view that PIK3CA mutated tissues must be treated as precancerous lesions. Importantly, they remark the effectiveness of combining cfDNA NGS liquid and tissue biopsies to monitor disease evolution as well as to identify aggressive clones targetable by tailored therapy, which is more efficient than conventional protocols.

20.
Genes (Basel) ; 14(8)2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37628684

RESUMO

The membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) protein is an acyltransferase catalyzing arachidonic acid incorporation into lysophosphatidylinositol. Patients with rare, biallelic loss-of-function variants of the MBOAT7 gene display intellectual disability with neurodevelopmental defects. The rs641738 inherited variant associated with reduced hepatic MBOAT7 expression has been linked to steatotic liver disease susceptibility. However, the impact of biallelic loss-of-function MBOAT7 variants on liver disease is not known. We report on a 2-year-old girl with MBOAT7-related intellectual disability and steatotic liver disease, confirming that MBOAT7 loss-of-function predisposes to liver disease.


Assuntos
Deficiência Intelectual , Feminino , Humanos , Pré-Escolar , Deficiência Intelectual/genética , Pacientes , Aciltransferases/genética , Ácido Araquidônico , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...