Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 18 Suppl 1: 10-22, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27615127

RESUMO

During embryonic development, endocrine cells of the pancreas are specified from multipotent progenitors. The transcription factor Neurogenin 3 (NEUROG3) is critical for this development and it has been shown that all endocrine cells of the pancreas arise from endocrine progenitors expressing NEUROG3. A thorough understanding of the role of NEUROG3 during development, directed differentiation of pluripotent stem cells and in models of cellular reprogramming, will guide future efforts directed at finding novel sources of ß-cells for cell replacement therapies. In this article, we review the expression and function of NEUROG3 in both mouse and human and present the further characterization of a monoclonal antibody directed against NEUROG3. This antibody has been previously been used for detection of both mouse and human NEUROG3. However, our results suggest that the epitope recognized by this antibody is specific to mouse NEUROG3. Thus, we have also generated a monoclonal antibody specifically recognizing human NEUROG3 and present the characterization of this antibody here. Together, these antibodies will provide useful tools for future studies of NEUROG3 expression, and the data presented in this article suggest that recently described expression patterns of NEUROG3 in human foetal and adult pancreas should be re-examined.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Ilhotas Pancreáticas/citologia , Proteínas do Tecido Nervoso/genética , Animais , Anticorpos Monoclonais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Reprogramação Celular , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/metabolismo
2.
Diabetologia ; 55(1): 154-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21947380

RESUMO

AIMS/HYPOTHESIS: The aim of the study was to identify surface bio-markers and corresponding antibody tools that can be used for the imaging and immunoisolation of the pancreatic beta cell and its progenitors. This may prove essential to obtain therapeutic grade human beta cells via stem cell differentiation. METHODS: Using bioinformatics-driven data mining, we generated a gene list encoding putative plasma membrane proteins specifically expressed at distinct stages of the developing pancreas and islet beta cells. In situ hybridisation and immunohistochemistry were used to further prioritise and identify candidates. RESULTS: In the developing pancreas seizure related 6 homologue like (SEZ6L2), low density lipoprotein receptor-related protein 11 (LRP11), dispatched homologue 2 (Drosophila) (DISP2) and solute carrier family 30 (zinc transporter), member 8 (SLC30A8) were found to be expressed in early islet cells, whereas discoidin domain receptor tyrosine kinase 1 (DDR1) and delta/notch-like EGF repeat containing (DNER) were expressed in early pancreatic progenitors. The expression pattern of DDR1 overlaps with the early pancreatic and duodenal homeobox 1 (PDX1)⁺/NK6 homeobox 1 (NKX6-1)⁺ multipotent progenitor cells from embryonic day 11, whereas DNER expression in part overlaps with neurogenin 3 (NEUROG3)⁺ cells. In the adult pancreas SEZ6L2, LRP11, DISP2 and SLC30A8, but also FXYD domain containing ion transport regulator 2 (FXYD2), tetraspanin 7 (TSPAN7) and transmembrane protein 27 (TMEM27), retain an islet-specific expression, whereas DDR1 is undetectable. In contrast, DNER is expressed at low levels in peripheral mouse and human islet cells. Re-expression of DDR1 and upregulation of DNER is observed in duct-ligated pancreas. Antibodies to DNER and DISP2 have been successfully used in cell sorting. CONCLUSIONS/INTERPRETATION: Extracellular epitopes of SEZ6L2, LRP11, DISP2, DDR1 and DNER have been identified as useful tags by applying specific antibodies to visualise pancreatic cell types at specific stages of development. Furthermore, antibodies recognising DISP2 and DNER are suitable for FACS-mediated cell purification.


Assuntos
Antígenos de Superfície/metabolismo , Separação Celular/métodos , Ilhotas Pancreáticas/metabolismo , Células-Tronco/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Mineração de Dados , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Camundongos , Camundongos Endogâmicos BALB C , Técnicas de Cultura de Órgãos , Células-Tronco/citologia
3.
Mol Biol Cell ; 12(3): 725-38, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11251083

RESUMO

Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occurred at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin beta1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin beta1 and fibronectin in a MEK-ERK-dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.


Assuntos
Tamanho Celular/efeitos dos fármacos , Tamanho Celular/fisiologia , Fator de Crescimento Epidérmico/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fase S/efeitos dos fármacos , Fase S/fisiologia , Animais , Sequência de Bases , Células Cultivadas , Primers do DNA/genética , Ativação Enzimática/efeitos dos fármacos , Feminino , Fibronectinas/genética , Flavonoides/farmacologia , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Técnicas In Vitro , Integrina beta1/genética , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos
4.
Mol Cell Biol ; 19(9): 6003-11, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10454547

RESUMO

In this study, activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling pathway was analyzed in proliferating rat hepatocytes both in vivo after partial hepatectomy and in vitro following epidermal growth factor (EGF)-pyruvate stimulation. First, a biphasic MEK/ERK activation was evidenced in G(1) phase of hepatocytes from regenerating liver but not from sham-operated control animals. One occurred in early G(1) (30 min to 4 h), and the other occurred in mid-late G(1), peaking at around 10.5 h. Interestingly, the mid-late G(1) activation peak was located just before cyclin D1 induction in both in vivo and in vitro models. Second, the biological role of the MEK/ERK cascade activation in hepatocyte progression through the G(1)/S transition was assessed by adding a MEK inhibitor (PD 98059) to EGF-pyruvate-stimulated hepatocytes in primary culture. In the presence of MEK inhibitor, cyclin D1 mRNA accumulation was inhibited, DNA replication was totally abolished, and the MEK1 isoform was preferentially targeted by this inhibition. This effect was dose dependent and completely reversed by removing the MEK inhibitor. Furthermore, transient transfection of hepatocytes with activated MEK1 construct resulted in increased cyclin D1 mRNA accumulation. Third, a correlation between the mid-late G(1) MEK/ERK activation in hepatocytes in vivo after partial hepatectomy and the mitogen-independent proliferation capacity of these cells in vitro was established. Among hepatocytes isolated either 5, 7, 9, 12 or 15 h after partial hepatectomy, only those isolated from 12- and 15-h regenerating livers were able to replicate DNA without additional growth stimulation in vitro. In addition, PD 98059 intravenous administration in vivo, before MEK activation, was able to inhibit DNA replication in hepatocytes from regenerating livers. Taken together, these results show that (i) early induction of the MEK/ERK cascade is restricted to hepatocytes from hepatectomized animals, allowing an early distinction of primed hepatocytes from those returning to quiescence, and (ii) mid-late G(1) MEK/ERK activation is mainly associated with cyclin D1 accumulation which leads to mitogen-independent progression of hepatocytes to S phase. These results allow us to point to a growth factor dependency in mid-late G(1) phase of proliferating hepatocytes in vivo as observed in vitro in proliferating hepatocytes and argue for a crucial role of the MEK/ERK cascade signalling pathway.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fase G1/fisiologia , Fígado/citologia , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ciclo Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Ciclina D1/biossíntese , Ciclina D1/genética , Replicação do DNA , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Feminino , Flavonoides/farmacologia , Hepatectomia , Fígado/efeitos dos fármacos , Regeneração Hepática , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transfecção
5.
FEBS Lett ; 452(3): 247-53, 1999 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-10386600

RESUMO

The changes in phosphoproteins purified with the affinity peptide p9CKShs1 were analyzed from extracts of regenerating rat livers in order to define some G1 and G1/S regulations characteristic of mature hepatocytes stimulated to proliferate. We observed a 47 kDa phosphoprotein that occurred first at the end of G1 before peaking in the S phase. P47 was also found to be phosphorylated in late G1 in primary hepatocyte cultures stimulated with mitogens. P47 was still phosphorylated in extracts depleted of Cdc2, but to a lesser extent after Cdk2 depletion. This phosphoprotein was identified as Skp2. (i) P47 shared the same electrophoretic mobility than Skp2, a cell cycle protein essential for S phase entry in human fibroblasts; (ii) Skp2, like P47, started to be expressed and was highly phosphorylated during the G1/S transition of hepatocytes stimulated to proliferate in vivo and in vitro; (iii) P47 was specifically immunoprecipitated by an antibody directed against Skp2. In addition, cyclin A/Cdk2 complexes from regenerating liver clearly interacted with Skp2. This is the first demonstration that Skp2 is induced and phosphorylated in the late G1 and S phase of hepatocytes in vivo in regenerating liver as well as in vitro in mitogen-stimulated hepatocytes.


Assuntos
Ciclo Celular , Fígado/citologia , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Animais , Células Cultivadas , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , RNA Helicases DEAD-box , Fator de Crescimento Epidérmico/farmacologia , Fase G1 , Regulação da Expressão Gênica , Humanos , Fosfatos/metabolismo , Fosforilação , Ratos , Fase S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...