Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Z Med Phys ; 33(4): 542-551, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36357294

RESUMO

PURPOSE: To evaluate the dosimetric accuracy for small field proton irradiation relevant for pre-clinical in vivo studies using clinical infrastructure and technology. In this context additional beam collimation and range reduction was implemented. METHODS AND MATERIALS: The clinical proton beam line employing pencil beam scanning (PBS) was adapted for the irradiation of small fields at shallow depths. Cylindrical collimators with apertures of 15, 12, 7 and 5mm as well as two different range shifter types, placed at different distances relative to the target, were tested: a bolus range shifter (BRS) attached to the collimator and a clinical nozzle mounted range shifter (CRS) placed at a distance of 72cm from the collimator. The Monte Carlo (MC) based dose calculation engine implemented in the clinical treatment planning system (TPS) was commissioned for these two additional hardware components. The study was conducted with a phantom and cylindrical target sizes between 2 and 25mm in diameter following a dosimetric end-to-end test concept. RESULTS: The setup with the CRS provided a uniform dose distribution across the target. An agreement of better than5% between the planned dose and the measurements was obtained for a target with 3mm diameter (collimator 5mm). A 2mm difference between the collimator and the target diameter (target being 2 mm smaller than the collimator) sufficed to cover the whole target with the planned dose in the setup with CRS. Using the BRS setup (target 8mm, collimator 12mm) resulted in non-homogeneous dose distributions, with a dose discrepancy of up to 10% between the planned and measured doses. CONCLUSION: The clinical proton infrastructure with adequate beam line adaptations and a state-of-the-art TPS based on MC dose calculations enables small animal irradiations with a high dosimetric precision and accuracy for target sizes down to 3mm.


Assuntos
Terapia com Prótons , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos , Síncrotrons , Imagens de Fantasmas , Método de Monte Carlo
2.
Med Phys ; 49(9): 6150-6160, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35754376

RESUMO

PURPOSE: Radiochromic films are versatile 2D dosimeters with high-resolution and near tissue equivalence. To assure high precision and accuracy, a time-consuming calibration process is required. To improve the time efficiency, a novel calibration method utilizing the ratio of the same dose profile measured at different monitor units (MUs) is introduced and tested in a proton and photon beam. METHODS: The calibration procedure employs the dose ratio of film measurements of the same relative profile for different absolute dose values. Hence, the ratio of the dose is constant at any point of the profile, but the ratio of the net optical densities is not constant. The key idea of the method is to optimize the calibration function until the ratio of the calculated doses is constant. The proposed method was tested in the dose range between 0.25-12 and 1-6 Gy in a proton and photon beam, respectively. A radial symmetric profile and a rectangular profile were created, both having a central plateau region of about 3 cm diameter and a dose falloff of about 1.5 cm at larger distances. The dose falloff region was used as input for the optimization method and the central plateau region served as dose reference points. Only the plateau region of the highest dose entered the optimization as an additional objective. The measured data were randomly split into differently sized training and test sets. The optimization was repeated 1000 times with random start value initialization using the same start values for the standard and the gradient method. Finally, a proton plan with four dose levels was created, which were separated spatially, to test the possibility of a full calibration within a single measurement. RESULTS: Parameter estimation was possible with as low as one dose ratio used for optimization in both the photon and the proton case, yet exhibiting a high sensitivity on the dose level. The root mean squared deviation (RMSD) of the dose was less than 1% when the dose ratio was in the order of 20, whereas the median RMSD of all optimizations was 1.7%. Using four dose levels for optimization resulted in a median RMSD of 1% when randomly selecting the dose levels. Having at least one dose ratio of about 20 included in the optimization considerably improved the RMSD of the calibration function. Using six or eight dose levels reduced the sensitivity on the dose level selection and the median RMSD was 0.8%. A full calibration was possible in a single measurement having four dose levels in one plan but spatially separated. CONCLUSIONS: The number of measurements required to obtain an EBT3 film calibration function could be reduced using the proposed dose ratio method while maintaining the same accuracy as with the standard method.


Assuntos
Dosimetria Fotográfica , Terapia com Prótons , Calibragem , Dosimetria Fotográfica/métodos , Fótons , Prótons
3.
Med Phys ; 48(2): 841-851, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33283910

RESUMO

PURPOSE: To develop a computer-driven and thus less user-dependent method, allowing for a simple and straightforward generation of a Monte Carlo (MC) beam model of a scanned proton and carbon ion beam delivery system. METHODS: In a first step, experimental measurements were performed for proton and carbon ion energies in the available energy ranges. Data included depth dose profiles measured in water and spot sizes in air at various isocenter distances. Using an automated regularization-based optimization process (AUTO-BEAM), GATE/Geant4 beam models of the respective beam lines were generated. These were obtained sequentially by using least square weighting functions with and without regularization, to iteratively tune the beam parameters energy, energy spread, beam sigma, divergence, and emittance until a user-defined agreement was reached. Based on the parameter tuning for a set of energies, a beam model was semi-automatically generated. The resulting beam models were validated for all centers comparing to independent measurements of laterally integrated depth dose curves and spot sizes in air. For one representative center, three-dimensional dose cubes were measured and compared to simulations. The method was applied on one research as well as four different clinical beam lines for proton and carbon ions of three different particle therapy centers using synchrotron or cyclotron accelerator systems: (a) MedAustron ion therapy center, (b) University Proton Therapy Dresden, and (c) Center Antoine Lacassagne Nice. RESULTS: Particle beam ranges in the MC beam models agreed on average within 0.2 mm compared to measurements for all energies and beam lines. Spot sizes in air (full-width at half maximum) at all positions differed by less than 0.4% from the measurements. Dose calculation with the beam model for the clinical beam line at MedAustron agreed better than 1.7% in absolute dose for a representative clinical case treated with protons. For protons, beam model generation, including geometry creation, data conversion, and validation, was possible within three working days. The number of iterations required for the optimization process to converge, was found to be similar for all beam line geometries and particle types. CONCLUSION: The presented method was demonstrated to work independently of the beam optics behavior of the different beam lines, particle types, and geometries. Furthermore, it is suitable for non-expert users and requires only limited user interaction. Beam model validation for different beam lines based on different beam delivery systems, showed good agreement.


Assuntos
Terapia com Prótons , Humanos , Método de Monte Carlo , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Síncrotrons
4.
Z Med Phys ; 31(2): 166-174, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32651058

RESUMO

The central Gaussian shaped high dose region of a pencil beam (PB) in light ion beam therapy (LIBT) is enveloped by a low dose region causing non-negligible field size effects and impairs the dose calculation accuracy considerably if the low dose envelope is not well modeled. The purpose of this study was to calculate the practical radius, Rc, at which a PB does not influence a field more than a certain accuracy level. Lateral dose profiles of proton beams in water were simulated using GATE/Geant4. Those lateral dose profiles were integrated numerically and used to calculate field size factors (FSFs). The Rc was then determined such, that the lateral dose at radii exceeding Rc can be neglected without compromising the FSF of a 20cm×20cm field more than a desired accuracy level c. The practical radius Rc yielding c=0.5% was compared to the frequently applied concept of full width at a ratio x of the maximum (FWxM). The sensitivity to variations of the beam width was tested by increasing the initial beam width σC of the clinical beam model by 0.5 and 1mm, respectively. Neglecting the dose at radii exceeding Rc resulted in the desired FSF accuracy, whereas using the FW0.01%M cut resulted in varying accuracy. In order to yield a constant FSF accuracy, the ratio x in FWxM ranged from 0.003% to 0.065% of the maximum. In contrast to Rc, FWxM was sensitive to variations of the initial beam width. The maximum Rc over all depths was less than 7cm for the low(62.4MeV) and medium(148.2MeV) proton energy beam, which suggests that a plane parallel ionization chamber exceeding that radius is sufficient to acquire laterally integrated depth dose distributions for those energies. However, this holds not true for the highest energy (252.7MeV) or when including a range shifter (RaShi). The values of Rc are specific to our beam line configuration as the maximum Rc was depending on both, the scattering material in the Nozzle as well as the distance of the air-gap between Nozzle and phantom.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Rádio (Anatomia)
5.
Med Phys ; 47(11): 5817-5828, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32967037

RESUMO

PURPOSE: Geant4 is a multi-purpose Monte Carlo simulation tool for modeling particle transport in matter. It provides a wide range of settings, which the user may optimize for their specific application. This study investigates GATE/Geant4 parameter settings for proton pencil beam scanning therapy. METHODS: GATE8.1/Geant4.10.3.p03 (matching the versions used in GATE-RTion1.0) simulations were performed with a set of prebuilt Geant4 physics lists (QGSP_BIC, QGSP_BIC_EMY, QGSP_BIC_EMZ, QGSP_BIC_HP_EMZ), using 0.1mm-10mm as production cuts on secondary particles (electrons, photons, positrons) and varying the maximum step size of protons (0.1mm, 1mm, none). The results of the simulations were compared to measurement data taken during clinical patient specific quality assurance at The Christie NHS Foundation Trust pencil beam scanning proton therapy facility. Additionally, the influence of simulation settings was quantified in a realistic patient anatomy based on computer tomography (CT) scans. RESULTS: When comparing the different physics lists, only the results (ranges in water) obtained with QGSP_BIC (G4EMStandardPhysics_Option0) depend on the maximum step size. There is clinically negligible difference in the target region when using High Precision neutron models (HP) for dose calculations. The EMZ electromagnetic constructor provides a closer agreement (within 0.35 mm) to measured beam sizes in air, but yields up to 20% longer execution times compared to the EMY electromagnetic constructor (maximum beam size difference 0.79 mm). The impact of this on patient-specific quality assurance simulations is clinically negligible, with a 97% average 2%/2 mm gamma pass rate for both physics lists. However, when considering the CT-based patient model, dose deviations up to 2.4% are observed. Production cuts do not substantially influence dosimetric results in solid water, but lead to dose differences of up to 4.1% in the patient CT. Small (compared to voxel size) production cuts increase execution times by factors of 5 (solid water) and 2 (patient CT). CONCLUSIONS: Taking both efficiency and dose accuracy into account and considering voxel sizes with 2 mm linear size, the authors recommend the following Geant4 settings to simulate patient specific quality assurance measurements: No step limiter on proton tracks; production cuts of 1 mm for electrons, photons and positrons (in the phantom and range-shifter) and 10 mm (world); best agreement to measurement data was found for QGSP_BIC_EMZ reference physics list at the cost of 20% increased execution times compared to QGSP_BIC_EMY. For simulations considering the patient CT model, the following settings are recommended: No step limiter on proton tracks; production cuts of 1 mm for electrons, photons and positrons (phantom/range-shifter) and 10 mm (world) if the goal is to achieve sufficient dosimetric accuracy to ensure that a plan is clinically safe; or 0.1 mm (phantom/range-shifter) and 1 mm (world) if higher dosimetric accuracy is needed (increasing execution times by a factor of 2); most accurate results expected for QGSP_BIC_EMZ reference physics list, at the cost of 10-20% increased execution times compared to QGSP_BIC_EMY.


Assuntos
Terapia com Prótons , Prótons , Simulação por Computador , Humanos , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
Med Phys ; 46(5): 2444-2456, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30870583

RESUMO

PURPOSE: The dose core of a proton pencil beam (PB) is enveloped by a low dose area reaching several centimeters off the central axis and containing a considerable amount of the dose. Adequate modeling of the different components of the PB profile is, therefore, required for accurate dose calculation. In this study, we experimentally validated one electromagnetic and two nuclear scattering models in GATE/Geant4 for dose calculation of proton beams in the therapeutic energy window (62-252 MeV) with and without range shifter (RaShi). METHODS: The multiple Coulomb scattering (MCS) model was validated by lateral dose core profiles measured for five energies at up to four depths from beam plateau to Bragg peak region. Nuclear halo profiles of single PBs were evaluated for three (62.4, 148.2, and 252.7 MeV) and two (97.4 and 124.7 MeV) energies, without and with RaShi, respectively. The influence of the dose core and nuclear halo on field sizes varying from 2-20 cm was evaluated by means of output factors (OFs), namely frame factors (FFs) and field size factors (FSFs), to quantify the relative increase of dose when increasing the field size. RESULTS: The relative increase in the dose core width in the simulations deviated negligibly from measurements for depths until 80% of the beam range, but was overestimated by up to 0.2 mm in σ toward the end of range for all energies. The dose halo region of the lateral dose profile agreed well with measurements in the open beam configuration, but was notably overestimated in the deepest measurement plane of the highest energy or when the beam passed through the RaShi. The root-mean-square deviations (RMSDs) between the simulated and the measured FSFs were less than 1% at all depths, but were higher in the second half of the beam range as compared to the first half or when traversing the RaShi. The deviations in one of the two tested hadron physics lists originated mostly in elastic scattering. The RMSDs could be reduced by approximately a factor of two by exchanging the default elastic scattering cross sections for protons. CONCLUSIONS: GATE/Geant4 agreed satisfyingly with most measured quantities. MCS was systematically overestimated toward the end of the beam range. Contributions from nuclear scattering were overestimated when the beam traversed the RaShi or at the depths close to the end of the beam range without RaShi. Both, field size effects and calculation uncertainties, increased when the beam traversed the RaShi. Measured field size effects were almost negligible for beams up to medium energy and were highest for the highest energy beam without RaShi, but vice versa when traversing the RaShi.


Assuntos
Método de Monte Carlo , Terapia com Prótons , Espalhamento de Radiação , Dosagem Radioterapêutica
7.
Phys Med Biol ; 63(11): 115008, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29616662

RESUMO

Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for Geant4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in -1.2 ± 1.2 mm (-0.5% ± 0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant range differences.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos , Calibragem , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Dosagem Radioterapêutica
8.
Phys Med Biol ; 62(21): 8470-8482, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29047455

RESUMO

Combining magnetic-resonance imaging (MRI) and proton therapy (PT) using pencil-beam scanning (PBS) may improve image-guided radiotherapy. We aimed at assessing the impact of a magnetic field on PBS-PT plan quality and robustness. Specifically, the robustness against anatomical changes and positioning errors in an MRI-guided scenario with a 30 cm radius 1.5 T magnetic field was studied for prostate PT. Five prostate cancer patients with three consecutive CT images (CT1-3) were considered. Single-field uniform dose PBS-PT plans were generated on the segmented CT1 with Monte-Carlo-based treatment planning software for inverse optimization. Plans were optimized at 90° gantry angle without B-field (no B), with ±1.5 T B-field (B and minus B), as well as at 81° gantry angle and +1.5 T (B G81). Plans were re-calculated on aligned CT2 and CT3 to study the impact of anatomical changes. Dose distributions were compared in terms of changes in DVH parameters, proton range and gamma-index pass-rates. To assess the impact of positioning errors, DVH parameters were compared for ±5 mm CT1 patient shifts in anterior-posterior (AP) and left-right (LR) direction. Proton beam deflection considerably reduced robustness against inter-fractional changes for the B scenario. Range agreement, gamma-index pass-rates and PTV V95% were significantly lower compared to no B. Improved robustness was obtained for minus B and B G81, the latter showing only minor differences to no B. The magnetic field introduced slight dosimetric changes under LR shifts. The impact of AP shifts was considerably larger, and equivalent for scenarios with and without B-field. Results suggest that robustness equivalent to PT without magnetic field can be achieved by adaptation of the treatment parameters, such as B-field orientation (minus B) with respect to the patient and/or gantry angle (B G81). MRI-guided PT for prostate cancer might thus be implemented without compromising robustness compared to state-of-the-art CT-guided PT.


Assuntos
Campos Magnéticos , Método de Monte Carlo , Neoplasias da Próstata/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Radiometria , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Tomografia Computadorizada por Raios X/métodos
9.
Phys Med Biol ; 62(18): N474-N484, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28718770

RESUMO

Oxygen ([Formula: see text]) ions are a potential alternative to carbon ions in ion beam therapy. Their enhanced linear energy transfer indicates a higher relative biological effectiveness and a reduced oxygen enhancement ratio. Due to the limited availability of [Formula: see text] ion beams, Monte Carlo (MC) transport codes are important research tools for investigating their potential. The purpose of this study was to validate GATE/Geant4 for [Formula: see text] ion beam therapy using experimental data from literature. Five hadron physics lists and two electromagnetic options were benchmarked against measured depth dose distributions (DDDs) and charge-changing cross sections. The simulated beam ranges deviated by less than 0.5% for all physics configurations and only a few points exceeded the gamma index criterion (2%/1 mm). However, the simulated partial charge-changing cross sections deviated considerably for some hadron physics configurations. Best agreement with the experimental values was obtained with the quantum molecular dynamics model (QMD), and we therefore suggest using this model in Geant4 to accurately describe the fragmentation of [Formula: see text] ion beams into lighter fragments ([Formula: see text]).


Assuntos
Benchmarking , Método de Monte Carlo , Radioisótopos de Oxigênio/uso terapêutico , Humanos , Transferência Linear de Energia , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...