RESUMO
AIMS: We conducted a One Health investigation to assess the source and transmission dynamics of SARS-CoV-2 infection in African lions (Panthera leo) at Utah's Hogle Zoo in Salt Lake City from October 2021 to February 2022. METHODS AND RESULTS: Following observation of respiratory illness in the lions, zoo staff collected pooled faecal samples and individual nasal swabs from four lions. All specimens tested positive for SARS-CoV-2 by reverse transcription-polymerase chain reaction (RT-PCR). The resulting investigation included: lion observation; RT-PCR testing of lion faeces every 1-7 days; RT-PCR testing of lion respiratory specimens every 2-3 weeks; staff interviews and RT-PCR testing; whole-genome sequencing of viruses from lions and staff; and comparison with existing SARS-CoV-2 human community surveillance sequences. In addition to all five lions, three staff displayed respiratory symptoms. All lions recovered and no hospitalizations or deaths were reported among staff. Three staff reported close contact with the lions in the 10 days before lion illness onset, one of whom developed symptoms and tested positive for SARS-CoV-2 on days 3 and 4, respectively, after lion illness onset. The other two did not report symptoms or test positive. Two staff who did not have close contact with the lions were symptomatic and tested positive on days 5 and 8, respectively, after lion illness onset. We detected SARS-CoV-2 RNA in lion faeces for 33 days and in lion respiratory specimens for 14 weeks after illness onset. The viruses from lions were genetically highly related to those from staff and two contemporaneous surveillance specimens from Salt Lake County; all were delta variants (AY.44). CONCLUSIONS: We did not determine the sources of these infections, although human-to-lion transmission likely occurred. The observed period of respiratory shedding was longer than in previously documented SARS-CoV-2 infections in large felids, indicating the need to further assess duration and potential implications of shedding.
Assuntos
Animais de Zoológico , COVID-19 , Leões , SARS-CoV-2 , Animais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/veterinária , COVID-19/virologia , Humanos , Utah/epidemiologia , Leões/virologia , SARS-CoV-2/genética , Fezes/virologia , Masculino , FemininoRESUMO
Soft tick relapsing fever (STRF) (also known as tickborne relapsing fever) is a rare infection caused by certain Borrelia spirochetes and transmitted to humans by soft-bodied Ornithodoros ticks. In the United States, acquisition of STRF is commonly associated with exposure to rustic cabins, camping, and caves. Antibiotic treatment is highly effective for STRF, but without timely treatment, STRF can result in severe complications, including death. No nationally standardized case definition for STRF exists; however, the disease is reportable in 12 states. This report summarizes demographic and clinical information for STRF cases reported during 2012-2021 from states where STRF is reportable. During this period, 251 cases were identified in 11 states. The median annual case count was 24. Most patients with STRF (55%) were hospitalized; no fatalities were reported. The geographic distribution and seasonal pattern of STRF have remained relatively constant since the 1990s. Persons should avoid rodent-infested structures and rodent habitats, such as caves, in areas where STRF is endemic. STRF surveillance, prevention, and control efforts would benefit from a standardized case definition and increased awareness of the disease among the public and clinicians.
Assuntos
Argasidae , Borrelia , Ornithodoros , Febre Recorrente , Animais , Humanos , Estados Unidos/epidemiologia , Febre Recorrente/diagnóstico , Febre Recorrente/tratamento farmacológico , Febre Recorrente/epidemiologia , Antibacterianos/uso terapêuticoRESUMO
Zoonotic transmission of SARS-CoV-2 from infected humans to other animals has been documented around the world, most notably in mink farming operations in Europe and the United States. Outbreaks of SARS-CoV-2 on Utah mink farms began in late July 2020 and resulted in high mink mortality. An investigation of these outbreaks revealed active and past SARS-CoV-2 infections in free-roaming and in feral cats living on or near several mink farms. Cats were captured using live traps, were sampled, fitted with GPS collars, and released on the farms. GPS tracking of these cats show they made frequent visits to mink sheds, moved freely around the affected farms, and visited surrounding residential properties and neighborhoods on multiple occasions, making them potential low risk vectors of additional SARS-CoV-2 spread in local communities.
Assuntos
COVID-19 , SARS-CoV-2 , Gatos , Animais , Humanos , Vison , COVID-19/epidemiologia , COVID-19/veterinária , Fazendas , Utah/epidemiologiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes respiratory disease in mink similar to human COVID-19. We characterized the pathological findings in 72 mink from US farms with SARS-CoV-2 outbreaks, localized SARS-CoV-2 and its host cellular receptor angiotensin-converting enzyme 2 (ACE2) in mink respiratory tissues, and evaluated the utility of various test methods and specimens for SARS-CoV-2 detection in necropsy tissues. Of SARS-CoV-2-positive animals found dead, 74% had bronchiolitis and diffuse alveolar damage (DAD). Of euthanized SARS-CoV-2-positive animals, 72% had only mild interstitial pneumonia or minimal nonspecific lung changes (congestion, edema, macrophages); similar findings were seen in SARS-CoV-2-negative animals. Suppurative rhinitis, lymphocytic perivascular inflammation in the lungs, and lymphocytic infiltrates in other tissues were common in both SARS-CoV-2-positive and SARS-CoV-2-negative animals. In formalin-fixed paraffin-embedded (FFPE) upper respiratory tract (URT) specimens, conventional reverse transcription-polymerase chain reaction (cRT-PCR) was more sensitive than in situ hybridization (ISH) or immunohistochemistry (IHC) for detection of SARS-CoV-2. FFPE lung specimens yielded less detection of virus than FFPE URT specimens by all test methods. By IHC and ISH, virus localized extensively to epithelial cells in the nasal turbinates, and prominently within intact epithelium; olfactory mucosa was mostly spared. The SARS-CoV-2 receptor ACE2 was extensively detected by IHC within turbinate epithelium, with decreased detection in lower respiratory tract epithelium and alveolar macrophages. This study expands on the knowledge of the pathology and pathogenesis of natural SARS-CoV-2 infection in mink and supports their further investigation as a potential animal model of SARS-CoV-2 infection in humans.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Vison , SARS-CoV-2 , Animais , COVID-19/veterinária , Células Epiteliais , Pulmão , Macrófagos Alveolares , SARS-CoV-2/fisiologia , Internalização do VírusRESUMO
From July−November 2020, mink (Neogale vison) on 12 Utah farms experienced an increase in mortality rates due to confirmed SARS-CoV-2 infection. We conducted epidemiologic investigations on six farms to identify the source of virus introduction, track cross-species transmission, and assess viral evolution. Interviews were conducted and specimens were collected from persons living or working on participating farms and from multiple animal species. Swabs and sera were tested by SARS-CoV-2 real-time reverse transcription polymerase chain reaction (rRT-PCR) and serological assays, respectively. Whole genome sequencing was attempted for specimens with cycle threshold values <30. Evidence of SARS-CoV-2 infection was detected by rRT-PCR or serology in ≥1 person, farmed mink, dog, and/or feral cat on each farm. Sequence analysis showed high similarity between mink and human sequences on corresponding farms. On farms sampled at multiple time points, mink tested rRT-PCR positive up to 16 weeks post-onset of increased mortality. Workers likely introduced SARS-CoV-2 to mink, and mink transmitted SARS-CoV-2 to other animal species; mink-to-human transmission was not identified. Our findings provide critical evidence to support interventions to prevent and manage SARS-CoV-2 in people and animals on mink farms and emphasizes the importance of a One Health approach to address emerging zoonoses.
Assuntos
COVID-19 , Saúde Única , Animais , Humanos , Gatos , Cães , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/veterinária , Vison , Fazendas , Utah/epidemiologiaRESUMO
In summer 2020, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from on or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus. Among the samples that could be further characterized, 127 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2 in mink) were identified. Moreover, at least 10% (n = 27) of the coronavirus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild free-roaming animals tested on mink farms. These results raise the possibility that mink farms could be potential hot spots for future trans-species viral spillover and the emergence of new pandemic coronaviruses.
Assuntos
Alphacoronavirus/isolamento & purificação , COVID-19/epidemiologia , COVID-19/veterinária , SARS-CoV-2/isolamento & purificação , Alphacoronavirus/classificação , Alphacoronavirus/genética , Animais , Animais Domésticos/virologia , Animais Selvagens/virologia , Gatos , Hotspot de Doença , Feminino , Masculino , Mephitidae/virologia , Camundongos , Vison/virologia , Guaxinins/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Utah/epidemiologiaRESUMO
Eighty-six percent of those engaged in HIV medical care in Massachusetts achieved viral suppression, making Massachusetts's long-term goal of eliminating new infections of HIV a real possibility. In order to achieve this goal, Massachusetts is working to engage all individuals living with HIV/AIDS in HIV medical care, keep them retained in care, and render their viral load non-detectable. Currently, in Massachusetts, the data elements necessary to monitor the HIV care continuum are documented in siloed health information systems that do not communicate with each other. Massachusetts has engaged in a pilot project to enhance their health information technology (IT) capacity to monitor the HIV care continuum and identify gaps in care. Massachusetts Virtual Epidemiologic Network (MAVEN) will be enhanced to perform as a consolidated electronic system to document and triage clinic-, laboratory-, and patient-level surveillance, field epidemiology and HIV care continuum data. The consolidation will enhance identification of patients infected with HIV and provide timely, actionable data for engagement and retention in HIV medical care.