RESUMO
Chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal), has had an unprecedented impact on amphibian biodiversity. Although Bd is globally widespread, Bsal is currently spreading, increasing the probability that these pathogens will co-occur in individual amphibians. Interactions among coinfecting parasites can have significant outcomes on disease dynamics and impact and, therefore, may have important consequences for amphibian conservation. We analyzed the patterns of Bd-Bsal coinfections in two species of free-ranging urodeles during an outbreak of chytridiomycosis in Spain. Our goals were to assess 1) the probability of co-occurrence of both chytrid species and 2) the correlation of pathogen loads in coinfected hosts. We detected coinfections in 81.58% of Triturus marmoratus (n=38) and in 18.75% of Ichthyosaura alpestris (n=16). Histopathologic lesions of chytridiomycosis were observed only in T. marmoratus. Our results demonstrate a positive relationship between Bd and Bsal loads in T. marmoratus, whereas the co-occurrence analysis showed a random association among pathogens in both urodele species. Overall, we show that Bd-Bsal coinfections intensify pathogen load in T. marmoratus and could, therefore, increase disease severity and have important consequences for the conservation of some amphibian species.
Assuntos
Quitridiomicetos , Coinfecção , Micoses , Anfíbios/microbiologia , Animais , Batrachochytrium , Coinfecção/epidemiologia , Coinfecção/veterinária , Surtos de Doenças/veterinária , Micoses/epidemiologia , Micoses/microbiologia , Micoses/veterinária , Espanha/epidemiologiaRESUMO
We conducted a serosurvey for Crimean-Congo hemorrhagic fever virus antibodies in various wildlife species in Catalonia, northeastern Spain. We detected high seroprevalence in southern Catalonia, close to the Ebro Delta wetland, a key stopover for birds migrating from Africa. Our findings could indicate that competent virus vectors are present in the region.
Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Animais Selvagens , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Estudos Soroepidemiológicos , Espanha/epidemiologiaRESUMO
Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.
Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Micoses/veterinária , Dinâmica PopulacionalRESUMO
The increase in human population and domestic pets, such as cats, are generating important consequences in terms of habitat loss and pathogen pollution of coastal ecosystems with potential to generate negative impacts in marine biodiversity. Toxoplasma gondii is the etiological agent of zoonotic disease toxoplasmosis, and is associated with cat abundance and anthropogenic disturbance. The presence of T. gondii oocysts in the ocean has negatively affected the health status of the threatened Southern sea otter (Enhydra lutris nereis) populations. The present study analyzed seroprevalence and presence of T. gondii DNA in American mink (Neovison vison), Southern river otters (Lontra provocax) and domestic cats (Felis silvestris catus) in four different areas in Southern Chile comprising studies in rivers and lakes in Andean foothills and mountains, marine habitat and island coastal ecosystems. Mean seroprevalence of T. gondii in the study was 64% of 151 total animals sampled: 59% of 73 American mink, 77% of 13 Southern river otters, 68% of 65 domestic cats and in two of two kodkods (Leopardus guigna). Toxoplasma gondii DNA was detected in tissues from one American mink and one Southern river otter. The present study confirms the widespread distribution of T. gondii in Southern Chile, and shows a high exposure of semiaquatic mustelids and domestic cats to the parasite. Cats and anthropogenic disturbance have a role in the maintenance of T. gondii infection in ecosystems of southern Chile.
Assuntos
Animais Selvagens/parasitologia , Doenças do Gato/epidemiologia , Gatos/parasitologia , Ecossistema , Vison/parasitologia , Lontras/parasitologia , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/epidemiologia , Animais , Animais Domésticos/parasitologia , Doenças do Gato/parasitologia , Chile/epidemiologia , Espécies em Perigo de Extinção , Felidae/parasitologia , Água Doce/parasitologia , Atividades Humanas , Saúde da População Rural , Estudos Soroepidemiológicos , Toxoplasmose Animal/transmissão , Saúde da População UrbanaRESUMO
Water-borne transmission may play an important role in the epidemiology of Toxoplasma gondii. Mammals closely related to freshwater ecosystems, such as the American mink (Neovison vison), are potentially valuable sentinels for T. gondii. To assess the importance of freshwater ecosystems in T. gondii epidemiology, sera of 678 American minks collected during the 2010 to 2015 Spanish national eradication campaigns were tested for the presence of T. gondii antibodies using the modified agglutination test (MAT, cut-off 1:25). A high prevalence of samples, 78.8% (CI95%: 75.5-81.8), were seropositive. In addition, a specific real-time PCR was performed in 120 brain samples and the parasite DNA was detected in 9.2% (CI95%: 5.2-15.7). Significant differences in seroprevalence were detected among bioregions, with the highest levels detected in coastal areas, and by age. The higher seroprevalence observed in older animals (80.0% adults versus 68.7% juveniles) confirms the importance of the horizontal transmission. These results indicate a widespread presence of T. gondii oocysts in freshwater ecosystems from Spain and further support the importance of water-borne transmission in the epidemiology of T. gondii.
Assuntos
Vison/parasitologia , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/epidemiologia , Toxoplasmose Animal/transmissão , Testes de Aglutinação/veterinária , Animais , Anticorpos Antiprotozoários/sangue , Ecossistema , Água Doce , Masculino , Estudos Soroepidemiológicos , Espanha/epidemiologia , Toxoplasma/genética , Toxoplasmose Animal/parasitologiaRESUMO
Understanding the spread of Toxoplasma gondii (T. gondii) in wild birds, particularly in those with opportunistic feeding behavior, is of interest for elucidating the epidemiological involvement of these birds in the maintenance and dissemination of the parasite. Overall, from 2009 to 2011, we collected sera from 525 seagull chicks (Yellow-legged gull (Larus michahellis) and Audouin's gull (L. audouinii)) from 6 breeding colonies in Spain and tested them using the modified agglutination test (MAT) for the presence of antibodies against T. gondii. Chick age was estimated from bill length. Main food source of seagull chicks was evaluated using stable isotope analyses from growing scapular feathers. Overall T. gondii seroprevalence was 21.0% (IC95% 17.5-24.4). A generalized linear mixed-effects model indicated that year (2009) and food source (freshwater) were risk factors associated to the individual risk of infection by T. gondii, while age (days) was close to significance. Freshwater food origin was related to the highest seroprevalence levels, followed by marine origin, supporting freshwater and sewages as important routes of dispersion of T. gondii. Year differences could indicate fluctuating rates of exposure of seagull chicks to T. gondii. Age ranged from 4 to 30 days and seropositivity tended to increase with age (P = 0.07), supporting that seropositivity is related to T. gondii infection rather than to maternal transfer of antibodies, which in gulls is known to sharply decrease with chick age. This study is the first to report T. gondii antibodies in Yellow-legged and Audouin's gulls, thereby extending the range of intermediate hosts for this parasite and underscoring the complexity of its epidemiology.