Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(11): 6389-6398, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34086932

RESUMO

Biogenesis of ribosomal subunits involves enzymatic modifications of rRNA that fine-tune functionally important regions. The universally conserved prokaryotic dimethyltransferase KsgA sequentially modifies two universally conserved adenosine residues in helix 45 of the small ribosomal subunit rRNA, which is in proximity of the decoding site. Here we present the cryo-EM structure of Escherichia coli KsgA bound to an E. coli 30S at a resolution of 3.1 Å. The high-resolution structure reveals how KsgA recognizes immature rRNA and binds helix 45 in a conformation where one of the substrate nucleotides is flipped-out into the active site. We suggest that successive processing of two adjacent nucleotides involves base-flipping of the rRNA, which allows modification of the second substrate nucleotide without dissociation of the enzyme. Since KsgA is homologous to the essential eukaryotic methyltransferase Dim1 involved in 40S maturation, these results have also implications for understanding eukaryotic ribosome maturation.


Assuntos
Adenosina/metabolismo , Escherichia coli/enzimologia , Metiltransferases/química , Adenosina/química , Microscopia Crioeletrônica , Metiltransferases/metabolismo , Modelos Moleculares , Conformação Proteica , Subunidades Ribossômicas Menores de Bactérias/química , Especificidade por Substrato
2.
J Struct Biol ; 203(3): 242-246, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29852220

RESUMO

Electron cryo-microscopy (cryo-EM) of purified macromolecular complexes is now providing 3D-structures at near-atomic resolution (Kühlbrandt, 2014). Cryo-EM can tolerate heterogeneous specimens, however, high-resolution efforts demand highly optimized samples. Therefore, significant pre-screening and evaluation is essential before a final dataset can be obtained. While cryo-EM is comparably slow and requires access to expensive high-end electron microscopes, room temperature negative stain EM is fast, inexpensive and provides immediate feedback. This has made it a popular approach for sample quality control in the early phases of a project. Optimization in negative stain can be critical not only for cryo-EM, but also for X-ray crystallography, as highlighted for example by studies on GPCR complexes (Kang et al., 2015; Rasmussen et al., 2012). However, when not done carefully and interpreted correctly, negative stain can be prone to artifacts. A typical problem, which is often overlooked in the interpretation of EM data of small membrane proteins, is the background, caused by empty detergent micelles, as it can be easily confused with detergent embedded protein samples. To counteract this ubiquitous problem, we present a case study on commonly used detergents.We show that most detergents produce significant background in negative stain EM, even below nominal critical micelle concentration (CMC). Unawareness of such artefacts can lead to misinterpretation of sample quality and homogeneity. We hope that this study can serve as a template to evaluate images in the early phases of a project.


Assuntos
Microscopia Crioeletrônica , Detergentes/química , Substâncias Macromoleculares/ultraestrutura , Receptores Acoplados a Proteínas G/química , Corantes/química , Cristalografia por Raios X , Humanos , Substâncias Macromoleculares/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Receptores Acoplados a Proteínas G/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...