Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 181: 297-307, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710401

RESUMO

The pericellular matrix (PCM) serves a critical role in signal transduction and mechanoprotection in chondrocytes. Osteoarthritis (OA) leads to a gradual deterioration of the cartilage, marked by a shift in the spatial arrangement of chondrocytes from initially isolated strands to large cell clusters in end-stage degeneration. These changes coincide with progressive enzymatic breakdown of the PCM. This study aims to assess the role and involvement of specific matrix metalloproteinases (MMPs) in PCM degradation during OA. We selected cartilage samples from 148 OA patients based on the predominant spatial chondrocyte patterns. The presence of various MMPs (-1,-2,-3,-7,-8,-9,-10,-12,-13) was identified by multiplexed immunoassays. For each pattern and identified MMP, the levels and activation states (pro-form vs. active form) were measured by zymograms and western blots. The localization of these MMPs was determined using immunohistochemical labeling. To verify these results, healthy cartilage was exposed to purified MMPs, and the consecutive structural integrity of the PCM was analyzed through immunolabeling and proximity ligation assay. Screening showed elevated levels of MMP-1,-2,-3,-7, and -13, with their expression profile showing a clear dependency of the degeneration stage. MMP-2 and -7 were localized in the PCM, whereas MMP-1,-7, and -13 were predominantly intracellular. We found that MMP-2 and -3 directly disrupt collagen type VI, and MMP-3 and -7 destroy perlecan. MMP-2, -3, and -7 emerge as central players in early PCM degradation in OA. With the disease's initial stages already displaying elevated peaks in MMP expression, this insight may guide early targeted therapies to halt abnormal PCM remodeling. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) causes a gradual deterioration of the articular cartilage, accompanied by a progressive breakdown of the pericellular matrix (PCM). The PCM's crucial function in protecting and transmitting signals within chondrocytes is impaired in OA. By studying 148 OA-patient cartilage samples, the involvement of matrix metalloproteinases (MMPs) in PCM breakdown was explored. Findings highlighted elevated levels of certain MMPs linked to different stages of degeneration. Notably, MMP-2, -3, and -7 were identified as potent contributors to early PCM degradation, disrupting key components like collagen type VI and perlecan. Understanding these MMPs' roles in initiating OA progression, especially in its early stages, provides insights into potential targets for interventions to preserve PCM integrity and potentially impeding OA advancement.


Assuntos
Matriz Extracelular , Metaloproteinases da Matriz , Osteoartrite , Proteólise , Humanos , Metaloproteinases da Matriz/metabolismo , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/enzimologia , Matriz Extracelular/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/enzimologia , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo
2.
BMC Cancer ; 23(1): 862, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700272

RESUMO

BACKGROUND: Cancer cells are characterized by changes in cell cytoskeletal architecture and stiffness. Despite advances in understanding the molecular mechanisms of musculoskeletal cancers, the corresponding cellular mechanical properties remain largely unexplored. The aim of this study was to investigate the changes in cellular stiffness and the associated cytoskeleton configuration alterations in various musculoskeletal cancer cells. METHODS: Cell lines from five main sarcoma types of the musculoskeletal system (chondrosarcoma, osteosarcoma, Ewing sarcoma, fibrosarcoma and rhabdomyosarcoma) as well as their healthy cell counterparts (chondrocytes, osteoblasts, mesenchymal stem cells, fibroblasts, skeletal muscle cells) were subjected to cell stiffness measurements via atomic force microscopy (AFM). Biochemical and structural changes of the cytoskeleton (F-actin, ß-tubulin and actin-related protein 2/3) were assessed by means of fluorescence labelling, ELISA and qPCR. RESULTS: While AFM stiffness measurements showed that the majority of cancer cells (osteosarcoma, Ewing sarcoma, fibrosarcoma and rhabdomyosarcoma) were significantly less stiff than their corresponding non-malignant counterparts (p < 0.001), the chondrosarcoma cells were significant stiffer than the chondrocytes (p < 0.001). Microscopically, the distribution of F-actin differed between malignant entities and healthy counterparts: the organisation in well aligned stress fibers was disrupted in cancer cell lines and the proteins was mainly concentrated at the periphery of the cell, whereas ß-tubulin had a predominantly perinuclear localization. While the F-actin content was lower in cancer cells, particularly Ewing sarcoma (p = 0.018) and Fibrosarcoma (p = 0.023), this effect was even more pronounced in the case of ß-tubulin for all cancer-healthy cell duos. Interestingly, chondrosarcoma cells were characterized by a significant upregulation of ß-tubulin gene expression (p = 0.005) and protein amount (p = 0.032). CONCLUSION: Modifications in cellular stiffness, along with structural and compositional cytoskeleton rearrangement, constitute typical features of sarcomas cells, when compared to their healthy counterpart. Notably, whereas a decrease in stiffness is typically a feature of malignant entities, chondrosarcoma cells were stiffer than chondrocytes, with chondrosarcoma cells exhibiting a significantly upregulated ß-tubulin expression. Each Sarcoma entity may have his own cellular-stiffness and cytoskeleton organisation/composition fingerprint, which in turn may be exploited for diagnostic or therapeutic purposes.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Fibrossarcoma , Osteossarcoma , Rabdomiossarcoma , Sarcoma de Ewing , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Sarcoma de Ewing/genética , Tubulina (Proteína) , Actinas , Osteossarcoma/genética , Rabdomiossarcoma/genética , Condrossarcoma/genética , Biomarcadores , Neoplasias Ósseas/genética
3.
J Vis Exp ; (183)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35635473

RESUMO

Bone metastases are associated with poor prognosis and low quality of life for the affected patients. Photodynamic therapy (PDT) emerges as a noninvasive therapy that can target local metastatic bone lesions. This paper presents an in vitro method to study the PDT effect in adherent cell lines. To this end, we demonstrate a step-by-step approach to subject both primary (giant cell bone tumor) and human bone metastatic cancer cell lines (derived from a primary invasive ductal breast carcinoma and renal carcinoma) to 5-aminolevulinic acid (5-ALA)-mediated PDT. After 24 h post 5-ALA-PDT irradiation (blue light-wavelength 436 nm), the therapeutic effect was assessed in terms of cell migration potential, viability, apoptotic features, and cellular growth arrest (senescence). Post 5-ALA-PDT irradiation, musculoskeletal-derived cell lines respond differently to the same doses and exposure of PDT. Depending on the extent of cellular damage triggered by PDT exposure, two different cell fates-apoptosis and senescence were noted. Variable sensitivity to PDT therapy among different bone cancer cell lines provides useful information for selecting more appropriate PDT settings in clinical settings. This protocol is designed to exemplify the use of PDT in the context of musculoskeletal neoplastic cell lines. It may be adjusted to investigate the therapeutic effect of PDT on various cancer cell lines and various photosensitizers and light sources.


Assuntos
Neoplasias Ósseas , Fotoquimioterapia , Ácido Aminolevulínico/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Fotoquimioterapia/métodos , Qualidade de Vida
4.
Biology (Basel) ; 10(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681119

RESUMO

Bone is a frequent site of metastases, being typically associated with a short-term prognosis in affected patients. Photodynamic therapy (PDT) emerges as a promising alternative treatment for controlling malignant disease that can directly target interstitial metastatic lesions. The aim of this study was to assess the effect induced by PDT treatment on both primary (giant cell bone tumor) and human bone metastatic cancer cell lines (derived from a primary invasive ductal breast carcinoma and renal carcinoma). After 24 h post light delivery (blue light-wavelength 436 nm) with 5-aminolevulinic acid, the effect on cellular migration, viability, apoptosis, and senescence were assessed. Our results showed that bone metastasis derived from breast cancer reacted with an inhibition of cell migration coupled with reduced viability and signs of apoptosis such as nuclei fragmentation following PDT exposure. A limited effect in terms of cellular viability inhibition was observed for the cells of giant cell bone tumors. In contrast, bone metastasis derived from renal carcinoma followed a different fate-cells were characterized by senescent features, without a notable effect on cell migration or viability. Collectively, our study illustrates that PDT could act as a successful therapy concept for local tumor control in some entities of bone metastases.

5.
Cells ; 9(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322555

RESUMO

Sclerosing spindle cell rhabdomyosarcoma (SSRMS) is a rare rhabdomyosarcomas (RMS) subtype. Especially cases bearing a myogenic differentiation 1 (MYOD1) mutation are characterized by a high recurrence and metastasis rate, often leading to a fatal outcome. SSRMS cell lines are valuable in vitro models for studying disease mechanisms and for the preclinical evaluation of new therapeutic approaches. In this study, a cell line established from a primary SSRMS tumor of a 24-year-old female after multimodal chemotherapeutic pretreatment has been characterized in detail, including immunohistochemistry, growth characteristics, cytogenetic analysis, mutation analysis, evaluation of stem cell marker expression, differentiation potential, and tumorigenicity in mice. The cell line which was designated SRH exhibited a complex genomic profile, including several translocations and deletions. Array-comparative genomic hybridization (CGH) revealed an overall predominating loss of gene loci. The mesenchymal tumor origin was underlined by the expression of mesenchymal markers and potential to undergo adipogenic and osteogenic differentiation. Despite myogenic marker expression, terminal myogenic differentiation was inhibited, which might be elicited by the MYOD1 hotspot mutation. In vivo tumorigenicity could be confirmed after subcutaneous injection into NOD/SCID/γcnull mice. Summarized, the SRH cell line is the first adult SSRMS cell line available for preclinical research on this rare RMS subtype.


Assuntos
Genômica , Rabdomiossarcoma/patologia , Adipogenia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Autenticação de Linhagem Celular/métodos , Hibridização Genômica Comparativa , Feminino , Humanos , Cariotipagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína MyoD/genética , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Transdução de Sinais , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Adulto Jovem
6.
Oncol Rep ; 43(1): 337-345, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746397

RESUMO

Ewing sarcomas (ES) are highly malignant mesenchymal tumors, which most often occur in children and adolescents. The current treatment of choice comprises wide resection in combination with multimodal chemotherapy including etoposide (Eto). Due to the serious side effects associated with common chemotherapeutics and prevalent multidrug resistance in recurrent and metastatic ES, there is a growing demand for alternative strategies and add­on drugs. Previous research has demonstrated efficient cell death induction by Eto in combination with arsenic trioxide (ATO) in ES cell lines. The aim of the present study was to investigate the effect of different temporal sequences of ATO and Eto administration on apoptosis induction and to explore the effect of both drugs on inhibitory glycogen synthase kinase­3ß (GSK3­ß) phosphorylation as well as multidrug transporter gene expression. The intensity of caspase activation was mainly determined by the Eto doses in A673 and TC­71 cells, whereas in RD­ES cells ATO application actively suppressed Eto­induced apoptosis. This coincided with an increase in inhibitory GSK­3ß phosphorylation in ATO­treated RD­ES cells. Inherent mRNA expression of multidrug resistance­associated protein 1 (MRP1) was low in the ES cell lines compared to that observed in the mesenchymal stem cells (MSC), whereas multidrug resistance protein 1 (MDR1) gene expression was considerably increased in the ES cell lines. ATO treatment reduced MRP1 mRNA expression in the A673 and TC­71 cells, while expression was induced in the MSC and RD­ES cells. In contrast, MDR1 mRNA expression was specifically induced by ATO in the A673 and TC­71 cells, reinforcing the expression differences between MSC and the ES cell lines. Although a reliable cell death induction by the combination of ATO and Eto has been previously shown in ES cell lines, the present study showed marked heterogeneity of the ES cell response to ATO and Eto treatment, illustrating the difficulty of prediction of individual treatment outcome in ES.


Assuntos
Trióxido de Arsênio/farmacologia , Neoplasias Ósseas/metabolismo , Etoposídeo/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Sarcoma de Ewing/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fosforilação/efeitos dos fármacos , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Proteína GLI1 em Dedos de Zinco/genética
7.
PLoS One ; 12(6): e0178857, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575066

RESUMO

Rhabdomyosarcomas (RMS) are the most prevalent soft tissue sarcomas affecting children and adolescents. Despite intensive treatment consisting of multimodal chemotherapy and surgery RMS patients diagnosed with metastatic disease expect long term survival rates of only 20%. Often multidrug resistance arises upon initial response emphasizing the need for new therapeutic drugs to improve treatment efficiency. Previously, we demonstrated the efficacy of the FDA approved drug arsenic trioxide (ATO) specifically inhibiting viability and clonal growth as well as inducing cell death in human RMS cell lines of different subtypes. In this study, we combined low dose ATO with lithium chloride (LiCl), which is approved as mood stabilizer for the treatment of bipolar disorder, but also inhibits growth and survival of different cancer cell types in pre-clinical research. Indeed, we could show additive effects of LiCl and ATO on viability reduction, decrease of colony formation as well as cell death induction. In the course of this, LiCl induced inhibitory glycogen synthase kinase-3ß (GSK-3ß) serine 9 phosphorylation, whereas glioma associated oncogene family 1 (GLI1) protein expression was particularly reduced by combined ATO and LiCl treatment in RD and RH-30 cell lines, showing high rates of apoptotic cell death. These results imply that combination of ATO with LiCl or another drug targeting GSK-3 is a promising strategy to enforce the treatment efficiency in resistant and recurrent RMS.


Assuntos
Apoptose/efeitos dos fármacos , Arsenicais/farmacologia , Cloreto de Lítio/farmacologia , Óxidos/farmacologia , Rabdomiossarcoma/patologia , Trióxido de Arsênio , Arsenicais/administração & dosagem , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Cloreto de Lítio/administração & dosagem , Óxidos/administração & dosagem
8.
Int J Oncol ; 49(5): 2135-2146, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27665785

RESUMO

Ewing sarcomas (ES) are rare mesenchymal tumours, most commonly diagnosed in children and adolescents. Arsenic trioxide (ATO) has been shown to efficiently and selectively target leukaemic blasts as well as solid tumour cells. Since multidrug resistance often occurs in recurrent and metastatic ES, we tested potential additive effects of ATO in combination with the cytostatic drugs etoposide and doxorubicin. The Ewing sarcoma cell lines A673, RD-ES and SK-N-MC as well as mesenchymal stem cells (MSC) for control were treated with ATO, etoposide and doxorubicin in single and combined application. Viability and proliferation (MTS assay, colony formation, 3D spheroid culture) as well as cell death induction (western blot analysis, flow cytometry) were analysed. In the MTS viability assays ATO treatment significantly reduced the metabolic activity of all three ES cell lines (A673, RD-ES and SK-N-MC) examined. Moreover, all ES cell lines were sensitive to etoposide, whereas MSC remained unaffected by the drug concentrations used. With the exception of ATO in RD-ES cells, all drugs induced apoptosis in the ES cell lines, indicated by caspase-3 and PARP cleavage. Combination of the agents potentiated the reduction of viability as well as the inhibitory effect on clonal growth. In addition, cell death induction was obviously enhanced in RD-ES and SK-N-MC cells by a combination of ATO and etoposide compared to single application. Summarised, the combination of low dose, physiologically easily tolerable ATO with commonly used etoposide and doxorubicin concentrations efficiently and selectively suppressed viability and colony formation in ES cell lines, whereas a combination of ATO and etoposide was favourable for cell death induction. In addition to an increase of the effectiveness of the cytostatic drugs and prevention of potential drug resistance, this approach may also reduce toxicity effects, since the individual doses can be reduced.


Assuntos
Apoptose/efeitos dos fármacos , Arsenicais/farmacologia , Neoplasias Ósseas/patologia , Sinergismo Farmacológico , Etoposídeo/farmacologia , Óxidos/farmacologia , Sarcoma de Ewing/patologia , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Trióxido de Arsênio , Western Blotting , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/metabolismo , Células Tumorais Cultivadas
9.
Int J Oncol ; 48(2): 801-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26676886

RESUMO

Rhabdomyosarcomas (RMS) are soft tissue tumours treated with a combination of surgery and chemotherapy. However, mortality rates remain high in case of recurrences and metastatic disease due to drug resistance and failure to undergo apoptosis. Therefore, innovative approaches targeting specific signalling pathways are urgently needed. We analysed the impact of different hedgehog (Hh) pathway inhibitors on growth and survival of six RMS cell lines using MTS assay, colony formation assay, 3D spheroid cultures, flow cytometry and western blotting. Especially the glioma-associated oncogene family (GLI) inhibitor arsenic trioxide (ATO) effectively reduced viability as well as clonal growth and induced cell death in RMS cell lines of embryonal, alveolar and sclerosing, spindle cell subtype, whereas normal skeletal muscle cells were hardly compromised by ATO. Combination of ATO with itraconazole potentiated the reduction of colony formation and spheroid size. These results show that ATO is a promising substance for treatment of relapsed and refractory RMS by directly targeting GLI transcription factors. The combination with itraconazole or other chemotherapeutic drugs has the opportunity to enforce the treatment efficiency of resistant and recurrent RMS.


Assuntos
Apoptose/efeitos dos fármacos , Arsenicais/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Óxidos/farmacologia , Rabdomiossarcoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Trióxido de Arsênio , Linhagem Celular Tumoral , Humanos , Itraconazol/farmacologia , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Recidiva Local de Neoplasia/metabolismo , Rabdomiossarcoma/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...