RESUMO
Background: Assessment of medical students in the clinical learning environment is fraught with challenges. Seemingly small variations in clinical clerkship evaluation can significantly impact a student's future. As such, the integrity of the grade selection process must be heavily scrutinized. Group decision making in the form of a clerkship grading committee may be part of a solution to address this complex problem. Methods: We conducted a retrospective observational study to describe grading committee decisions for a required fourth-year EM clerkship from August 2021 to April 2022. Literature on best practices for group decision making and assessment were reviewed. This informed the development and implementation of the committee process. Each committee meeting was video recorded and coded for discussion time per student, times the committee grade differed from historical-grade cutoffs with reasoning, and the frequency a committee member voiced a first-hand account of student performance. Results: Data from nine meetings was reviewed (86 students). The mean discussion time per student was 2 min 13 s (range 11 s to 9 min 22 s). The final committee decision differed from historical-grade cutoffs for nine students (10%), six were adjusted above and three below. In 64% (55/86) of student reviews a committee member voiced a first-hand experience of working with the student. Positive grade adjustments were made due to outlier evaluations and negative adjustments were made for professionalism concerns. Conclusions: Grading committees are a means to conduct a comprehensive review of student performance and offer shared ownership of the grade decision among committee members. More study is needed to directly determine their potential benefit and role in clerkship grading.
RESUMO
This article demonstrates how digital information and communication technologies (ICTs) (Zoom/WhatsApp) unexpectedly and counterintuitively proved to be valuable tools for community-engaged health research when, in the context of the COVID-19 pandemic, they were integrated into a research study testing a peer support group intervention with female immigrants from Mexico. Because of pandemic restrictions, we changed the study protocol to hold meetings remotely via Zoom rather than in person as originally planned. Because we recognized that this would lack some opportunities for participants to interact and develop relationships, we created a WhatsApp chat for each group. Despite challenges for participants to use ICTs and participant-stated preference for in-person meetings, the results demonstrated that participants overwhelmingly endorsed these technologies as promoting access, participation, engagement, and satisfaction. Zoom/WhatsApp created a valuable environment both as a method for conducting research with this population, but also as part of the intervention for immigrant women to support and learn from each other. ICT adaptations have now permanently changed the way we conduct community-engaged health research.
RESUMO
T lymphocytes or T cells are key components of the vertebrate response to pathogens and cancer. There are two T cell classes based on their TCRs, αß T cells and γδ T cells, and each plays a critical role in immune responses. The squamate reptiles may be unique among the vertebrate lineages by lacking an entire class of T cells, the γδ T cells. In this study, we investigated the basis of the loss of the γδ T cells in squamates. The genome and transcriptome of a sleepy lizard, the skink Tiliqua rugosa, were compared with those of tuatara, Sphenodon punctatus, the last living member of the Rhynchocephalian reptiles. We demonstrate that the lack of TCRγ and TCRδ transcripts in the skink are due to large deletions in the T. rugosa genome. We also show that tuataras are on a growing list of species, including sharks, frogs, birds, alligators, and platypus, that can use an atypical TCRδ that appears to be a chimera of a TCR chain with an Ab-like Ag-binding domain. Tuatara represents the nearest living relative to squamates that retain γδ T cells. The loss of γδTCR in the skink is due to genomic deletions that appear to be conserved in other squamates. The genes encoding the αßTCR chains in the skink do not appear to have increased in complexity to compensate for the loss of γδ T cells.
Assuntos
Genoma , Lagartos , Animais , Lagartos/genética , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos TRESUMO
Gallbladder cancer (GBC) is the commonest biliary tract cancer with an ill-defined etiology. We examined the role of Cd+2 exposures in a primary human gallbladder (GB) cell line model in this study. Cd+2 exposures induced decreased cell viability, reactive oxygen species (ROS) generation, altered Akt/ERK signaling pathway activation, PGE2 and COX-2 expression in a human primary gallbladder epithelial cell model. Pharmacological inhibitors were used to determine the key drivers of elevated COX-2 expression due to Cd+2 exposure. Our results show Cd+2 causes a dose-dependent reduction in GB cell viability (EC50 value - 18.6⯵M). Dose-dependent activation of phospho-Akt and phospho-ERK signaling pathways via increased phosphoprotein expression was observed due to Cd+2. Signaling activation of Akt and ERK was prevented by 5â¯mMâ¯N-Acetyl Cysteine (NAC), establishing the role of ROS as a key driver in the activation process. Importantly, we observed Cd+2 also caused a dose dependent change in the COX-2 and PGE2 expression levels. PI3K-Akt and NF-kB signaling pathways play a key role in Cd+2 exposure induced COX-2 activation in the gallbladder epithelial cells. In conclusion, our study measures the toxicological effects of Cd+2 exposures on human GB epithelial cells for the first time and establishes the role of Cd+2 as a possible driver of the Akt/ERK pathway overactivity and chronic inflammation in gallbladder carcinogenesis.
Assuntos
Cádmio/toxicidade , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/efeitos dos fármacos , Vesícula Biliar/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Glutationa/metabolismo , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
Cigarette smoke is widely regarded as a carcinogenic agent; thus, the incidence of relative neoplasms correlates to cigarette smoking (CS) on a global level. While CS is most commonly associated with carcinomas of the upper and lower respiratory tracts, studies have also associated CS with the pathogenesis of a variety of non-respiratory related neoplasms. The tobacco smoke emitted from cigarettes contains carcinogenic substances that can be harmful to the normal physiology of the human body. This study will elaborate on the incidence and etiology of carcinomas, as well as discuss, in detail, the role of tobacco in the pathogenesis of oral, esophageal, lung, gastric, pancreatic, renal, and bladder carcinomas.