Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(11): e47117, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144801

RESUMO

Myocardial ischemia-reperfusion (IR) injury represents a constellation of pathological processes that occur when ischemic myocardium experiences a restoration of perfusion. Reentrant arrhythmias, which represent a particularly lethal manifestation of IR injury, can result when ischemic tissue exhibits decreased excitability and/or changes of action potential duration (APD), conditions that precipitate unidirectional conduction block. Many of the cellular components that are involved with IR injury are modulated by pH and/or phosphometabolites such as ATP and phosphocreatine (PCr), all of which can be manipulated in vivo and potentially in the clinical setting. Using a mathematical model of the cardiomyocyte that we previously developed to study ischemia and reperfusion, we performed a series of simulations with the aim of determining whether pH- or phosphometabolite-related processes play a more significant role in generating changes in excitability and action potential morphology that are associated with the development of reentry. In our simulations, persistent shortening of APD, action potential amplitude (APA), and depolarization of the resting membrane potential were more severe when ATP and PCr availability were suppressed during reperfusion than when extracellular pH recovery was inhibited. Reduced phosphometabolite availability and pH recovery affected multiple ion channels and exchangers. Some of these effects were the result of direct modulation by phosphometabolites and/or acidosis, while others resulted from elevated sodium and calcium loads during reperfusion. In addition, increasing ATP and PCr availability during reperfusion was more beneficial in terms of increasing APD and APA than was increasing the amount of pH recovery. Together, these results suggest that therapies directed at increasing ATP and/or PCr availability during reperfusion may be more beneficial than perturbing pH recovery with regard to mitigating action potential changes that increase the likelihood of reentrant arrhythmias.


Assuntos
Potenciais de Ação , Trifosfato de Adenosina/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Reperfusão Miocárdica , Fosfocreatina/metabolismo , Animais , Simulação por Computador , Cobaias , Coração/fisiopatologia , Concentração de Íons de Hidrogênio , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia
2.
Am J Physiol Heart Circ Physiol ; 303(7): H766-83, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22886409

RESUMO

Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy.


Assuntos
Arritmias Cardíacas/fisiopatologia , Simulação por Computador , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/terapia , Metabolismo Energético , Acoplamento Excitação-Contração , Sistema de Condução Cardíaco/metabolismo , Humanos , Canais Iônicos/metabolismo , Contração Miocárdica , Fatores de Tempo
3.
PLoS Comput Biol ; 7(10): e1002241, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028644

RESUMO

Reperfusion injury results from pathologies of cardiac myocyte physiology that develop when previously ischemic myocardium experiences a restoration of normal perfusion. Events in the development of reperfusion injury begin with the restoration of a proton gradient upon reperfusion, which then allows the sodium-proton exchanger (NHE) to increase flux, removing protons from the intracellular space while importing sodium. The resulting sodium overload drives increased reverse-mode sodium-calcium exchanger (NCX) activity, creating a secondary calcium overload that has pathologic consequences. One of the attempts to reduce reperfusion-related damage, NHE inhibition, has shown little clinical benefit, and only when NHE inhibitors are given prior to reperfusion. In an effort to further understand why NHE inhibitors have been largely unsuccessful, we employed a new mathematical cardiomyocyte model that we developed for the study of ischemia and reperfusion. Using this model, we simulated 20 minutes of ischemia and 10 minutes of reperfusion, while also simulating NHE inhibition by reducing NHE flux in our model by varying amounts and at different time points. In our simulations, when NHE inhibition is applied at the onset of reperfusion, increasing the degree of inhibition increases the peak sodium and calcium concentrations, as well as reducing intracellular pH recovery. When inhibition was instituted at earlier time points, some modest improvements were seen, largely due to reduced sodium concentrations prior to reperfusion. Analysis of all sodium flux pathways suggests that the sodium-potassium pump (NaK) plays the largest role in exacerbated sodium overload during reperfusion, and that reduced NaK flux is largely the result of impaired pH recovery. While NHE inhibition does indeed reduce sodium influx through that exchanger, the resulting prolongation of intracellular acidosis paradoxically increases sodium overload, largely mediated by impaired NaK function.


Assuntos
Modelos Cardiovasculares , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Animais , Simulação por Computador , Humanos , Concentração de Íons de Hidrogênio , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Sódio/análise , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia , Falha de Tratamento
4.
Hum Gene Ther ; 17(8): 807-20, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16942441

RESUMO

In this study, recombinant AAV vectors pseudotyped with viral capsids derived from AAV serotypes 7 and 8 were evaluated for gene transfer in the murine striatum relative to vectors pseudotyped with AAV serotypes 2, 5, and 6. In comparison with rAAV serotype 2, pseudotyped vectors derived from AAV-7 and AAV-8 have increased transduction efficiency in the murine CNS, with the rank order rAAV-7 > rAAV-8 > rAAV-5 > rAAV-2 = rAAV-6, with all vectors demonstrating a marked tropism for neuronal transduction. Pseudotyped rAAV vector gene transfer in the brain after preimplantation of a murine 4C8 glioblastoma tumor was also evaluated. Efficiency of gene transfer to the orthotopic tumor was increased when using AAV-6, -7, and -8 capsid proteins in comparison with serotype 2, with the order rAAV-8 = rAAV-7 > rAAV-6 > rAAV-2 > rAAV-5. The increased gene transfer efficiency of rAAV vectors pseudotyped with the rAAV-8 capsid also provided enhanced therapeutic efficacy in a mouse model of glioblastoma multiforme, using vectors encoding an inhibitor of the vascular endothelial growth factor pathway. These studies demonstrate that rAAV vectors pseudotyped with capsids derived from AAV serotypes 7 and 8 provide enhanced gene transfer in the murine CNS and may offer increased therapeutic efficacy in the treatment of neurological disease.


Assuntos
Neoplasias Encefálicas/terapia , Corpo Estriado , Dependovirus , Terapia Genética , Glioblastoma/terapia , Neoplasias Experimentais/terapia , Animais , Capsídeo , Linhagem Celular Tumoral , Terapia Genética/métodos , Vetores Genéticos , Glioblastoma/genética , Humanos , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias/métodos , Neoplasias Experimentais/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Especificidade da Espécie , Transdução Genética/métodos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética
5.
Mol Ther ; 13(5): 956-66, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16580881

RESUMO

The presence of the blood-brain barrier complicates drug delivery in the development of therapeutic agents for the treatment of glioblastoma multiforme (GBM). The use of local gene transfer in the brain has the potential to overcome this delivery barrier by allowing the expression of therapeutic agents directly at the tumor site. In this study, we describe the development of a recombinant adeno-associated (rAAV) serotype 8 vector that encodes an optimized soluble inhibitor, termed sVEGFR1/R2, of vascular endothelial growth factor (VEGF). VEGF is an angiogenic factor highly up-regulated in GBM tumor tissue and correlates with disease progression. In subcutaneous models of GBM, VEGF inhibition following rAAV-mediated gene transfer significantly reduces overall tumor volume and increases median survival time following a single administration of vector. Using orthotopic brain tumor models of GBM, we find that direct intracranial administration of the rAAV-sVEGFR1/R2 vector to the tumor site demonstrates anti-tumor efficacy at doses that are not efficacious following systemic delivery of the vector. We propose that rAAV-mediated gene transfer of a potent soluble VEGF inhibitor in the CNS represents an effective antiangiogenic treatment strategy for GBM.


Assuntos
Sistema Nervoso Central/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Glioblastoma/terapia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Linhagem Celular , Linhagem Celular Tumoral , Dependovirus/classificação , Feminino , Terapia Genética/métodos , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Nus , Transplante de Neoplasias , Ratos , Ratos Nus , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sorotipagem , Solubilidade , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...