Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Hum Behav ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965376

RESUMO

Data within biobanks capture broad yet detailed indices of human variation, but biobank-wide insights can be difficult to extract due to complexity and scale. Here, using large-scale factor analysis, we distill hundreds of variables (diagnoses, assessments and survey items) into 35 latent constructs, using data from unrelated individuals with predominantly estimated European genetic ancestry in UK Biobank. These factors recapitulate known disease classifications, disentangle elements of socioeconomic status, highlight the relevance of psychiatric constructs to health and improve measurement of pro-health behaviours. We go on to demonstrate the power of this approach to clarify genetic signal, enhance discovery and identify associations between underlying phenotypic structure and health outcomes. In building a deeper understanding of ways in which constructs such as socioeconomic status, trauma, or physical activity are structured in the dataset, we emphasize the importance of considering the interwoven nature of the human phenome when evaluating public health patterns.

2.
Res Sq ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38946993

RESUMO

Few policies and little research exist regarding the disclosure of genomic results to research participants in Africa. As understanding participant preferences would be pivotal to the success of the feedback process, this study set out to address this issue by engaging with enrolled participants from an ongoing genomics research project on neurodevelopmental disorders with the aim to assess the anticipated impact of receiving pertinent results and explore the preferences for feedback in a South-African context. Twelve semi-structured interviews were conducted with 17 parents of children participating in the research study. Transcribed interview data and observational notes were analysed using thematic analysis and framework matrices. Participants linked their own meaning to the impact of receiving a pertinent result and perceived the information as useful for reasons other than only clinical utility. These included closure, improved management of their child's condition and information regarding recurrence risks. In terms of preferences for feedback, an in-person result delivery session, conducted by a member of the study team or medical professional familiar with their child was preferred. In addition, participants felt a sense of ownership over their blood or their contribution to the research study, finding meaning even in non-pertinent (secondary findings) or negative results. These findings provide insight into the type of discussions that may be valuable in enabling the development of best practices and guidelines for the return of individual genetic research results, in a culturally appropriate manner, within South-African communities.

3.
Mol Autism ; 15(1): 27, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877467

RESUMO

BACKGROUND: Positive assortative mating (AM) in several neuropsychiatric traits, including autism, has been noted. However, it is unknown whether the pattern of AM is different in phenotypically defined autism subgroups [e.g., autism with and without intellectually disability (ID)]. It is also unclear what proportion of the phenotypic AM can be explained by the genetic similarity between parents of children with an autism diagnosis, and the consequences of AM on the genetic structure of the population. METHODS: To address these questions, we analyzed two family-based autism collections: the Simons Foundation Powering Autism Research for Knowledge (SPARK) (1575 families) and the Simons Simplex Collection (SSC) (2283 families). RESULTS: We found a similar degree of phenotypic and ancestry-related AM in parents of children with an autism diagnosis regardless of the presence of ID. We did not find evidence of AM for autism based on autism polygenic scores (PGS) (at a threshold of |r|> 0.1). The adjustment of ancestry-related AM or autism PGS accounted for only 0.3-4% of the fractional change in the estimate of the phenotypic AM. The ancestry-related AM introduced higher long-range linkage disequilibrium (LD) between single nucleotide polymorphisms (SNPs) on different chromosomes that are highly ancestry-informative compared to SNPs that are less ancestry-informative (D2 on the order of 1 × 10-5). LIMITATIONS: We only analyzed participants of European ancestry, limiting the generalizability of our results to individuals of non-European ancestry. SPARK and SSC were both multicenter studies. Therefore, there could be ancestry-related AM in SPARK and SSC due to geographic stratification. The study participants from each site were unknown, so we were unable to evaluate for geographic stratification. CONCLUSIONS: This study showed similar patterns of AM in autism with and without ID, and demonstrated that the common genetic influences of autism are likely relevant to both autism groups. The adjustment of ancestry-related AM and autism PGS accounted for < 5% of the fractional change in the estimate of the phenotypic AM. Future studies are needed to evaluate if the small increase of long-range LD induced by ancestry-related AM has impact on the downstream analysis.


Assuntos
Transtorno Autístico , Desequilíbrio de Ligação , Fenótipo , Humanos , Transtorno Autístico/genética , Masculino , Feminino , Herança Multifatorial , Criança , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Adulto , Deficiência Intelectual/genética
4.
Neuron ; 111(18): 2800-2810.e5, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37463579

RESUMO

Genetic association studies have made significant contributions to our understanding of the etiology of neurodevelopmental disorders (NDDs). However, these studies rarely focused on the African continent. The NeuroDev Project aims to address this diversity gap through detailed phenotypic and genetic characterization of children with NDDs from Kenya and South Africa. We present results from NeuroDev's first year of data collection, including phenotype data from 206 cases and clinical genetic analyses of 99 parent-child trios. Most cases met criteria for global developmental delay/intellectual disability (GDD/ID, 80.3%). Approximately half of the children with GDD/ID also met criteria for autism. Analysis of exome-sequencing data identified a pathogenic or likely pathogenic variant in 13 (17%) of the 75 cases from South Africa and 9 (38%) of the 24 cases from Kenya. Data from the trio pilot are publicly available, and the NeuroDev Project will continue to develop resources for the global genetics community.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Criança , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Deficiência Intelectual/genética , Transtorno Autístico/genética , Exoma , Deficiências do Desenvolvimento/genética
5.
Nature ; 614(7948): 492-499, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755099

RESUMO

Both common and rare genetic variants influence complex traits and common diseases. Genome-wide association studies have identified thousands of common-variant associations, and more recently, large-scale exome sequencing studies have identified rare-variant associations in hundreds of genes1-3. However, rare-variant genetic architecture is not well characterized, and the relationship between common-variant and rare-variant architecture is unclear4. Here we quantify the heritability explained by the gene-wise burden of rare coding variants across 22 common traits and diseases in 394,783 UK Biobank exomes5. Rare coding variants (allele frequency < 1 × 10-3) explain 1.3% (s.e. = 0.03%) of phenotypic variance on average-much less than common variants-and most burden heritability is explained by ultrarare loss-of-function variants (allele frequency < 1 × 10-5). Common and rare variants implicate the same cell types, with similar enrichments, and they have pleiotropic effects on the same pairs of traits, with similar genetic correlations. They partially colocalize at individual genes and loci, but not to the same extent: burden heritability is strongly concentrated in significant genes, while common-variant heritability is more polygenic, and burden heritability is also more strongly concentrated in constrained genes. Finally, we find that burden heritability for schizophrenia and bipolar disorder6,7 is approximately 2%. Our results indicate that rare coding variants will implicate a tractable number of large-effect genes, that common and rare associations are mechanistically convergent, and that rare coding variants will contribute only modestly to missing heritability and population risk stratification.


Assuntos
Exoma , Frequência do Gene , Variação Genética , Herança Multifatorial , Humanos , Exoma/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Fatores de Risco , Reino Unido , Loci Gênicos/genética , Esquizofrenia/genética , Transtorno Bipolar/genética
6.
Nat Genet ; 54(11): 1630-1639, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280734

RESUMO

The canonical paradigm for converting genetic association to mechanism involves iteratively mapping individual associations to the proximal genes through which they act. In contrast, in the present study we demonstrate the feasibility of extracting biological insights from a very large region of the genome and leverage this strategy to study the genetic influences on autism. Using a new statistical approach, we identified the 33-Mb p-arm of chromosome 16 (16p) as harboring the greatest excess of autism's common polygenic influences. The region also includes the mechanistically cryptic and autism-associated 16p11.2 copy number variant. Analysis of RNA-sequencing data revealed that both the common polygenic influences within 16p and the 16p11.2 deletion were associated with decreased average gene expression across 16p. The transcriptional effects of the rare deletion and diffuse common variation were correlated at the level of individual genes and analysis of Hi-C data revealed patterns of chromatin contact that may explain this transcriptional convergence. These results reflect a new approach for extracting biological insight from genetic association data and suggest convergence of common and rare genetic influences on autism at 16p.


Assuntos
Transtorno Autístico , Humanos , Transtorno Autístico/genética , Variações do Número de Cópias de DNA , Cromossomos , Deleção Cromossômica , Cromossomos Humanos Par 16/genética
7.
Nat Genet ; 54(10): 1470-1478, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163277

RESUMO

Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are highly heritable neurodevelopmental conditions, with considerable overlap in their genetic etiology. We dissected their shared and distinct genetic etiology by cross-disorder analyses of large datasets. We identified seven loci shared by the disorders and five loci differentiating them. All five differentiating loci showed opposite allelic directions in the two disorders and significant associations with other traits, including educational attainment, neuroticism and regional brain volume. Integration with brain transcriptome data enabled us to identify and prioritize several significantly associated genes. The shared genomic fraction contributing to both disorders was strongly correlated with other psychiatric phenotypes, whereas the differentiating portion was correlated most strongly with cognitive traits. Additional analyses revealed that individuals diagnosed with both ASD and ADHD were double-loaded with genetic predispositions for both disorders and showed distinctive patterns of genetic association with other traits compared with the ASD-only and ADHD-only subgroups. These results provide insights into the biological foundation of the development of one or both conditions and of the factors driving psychopathology discriminatively toward either ADHD or ASD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Encéfalo , Predisposição Genética para Doença , Humanos , Fenótipo
8.
JAMA Pediatr ; 176(9): 915-923, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849387

RESUMO

Importance: Presence of developmental delays in autism is well established, yet few studies have characterized variability in developmental milestone attainment in this population. Objective: To characterize variability in the age at which autistic individuals attain key developmental milestones based on co-occurring intellectual disability (ID), presence of a rare disruptive genetic variant associated with neurodevelopmental disorders (NDD), age at autism diagnosis, and research cohort membership. Design: The study team harmonized data from 4 cross-sectional autism cohorts: the Autism Genetics Research Exchange (n = 3284; 1997-2015), The Autism Simplex Collection (n = 694; 2008-2011), the Simons Simplex Collection (n = 2753; 2008-2011), and the Simons Foundation Powering Autism Research for Knowledge (n = 10 367; 2016-present). The last sample further included 4145 siblings without an autism diagnosis or ID. Participants: Convenience sample of 21 243 autistic individuals or their siblings without an autism diagnosis aged 4 to 17 years. Main Outcomes and Measures: Parents reported ages at which participants attained key milestones including smiling, sitting upright, crawling, walking, spoon-feeding self, speaking words, speaking phrases, and acquiring bladder and bowel control. A total of 5295 autistic individuals, and their biological parents, were genetically characterized to identify de novo variants in NDD-associated genes. The study team conducted time-to-event analyses to estimate and compare percentiles in time with milestone attainment across autistic individuals, subgroups of autistic individuals, and the sibling sample. Results: Seventeen thousand ninety-eight autistic individuals (mean age, 9.15 years; 80.8% male) compared with 4145 siblings without autism or ID (mean age, 10.2 years; 50.2% female) showed delays in milestone attainment, with median (IQR) delays ranging from 0.7 (0.3-1.6) to 19.7 (11.4-32.2) months. More severe and more variable delays in autism were associated with the presence of co-occurring ID, carrying an NDD-associated rare genetic variant, and being diagnosed with autism by age 5 years. More severe and more variable delays were also associated with membership in earlier study cohorts, consistent with autism's diagnostic and ascertainment expansion over the last 30 years. Conclusions and Relevance: As the largest summary to date of developmental milestone attainment in autism, to our knowledge, this study demonstrates substantial developmental variability across different conditions and provides important context for understanding the phenotypic and etiological heterogeneity of autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Irmãos
9.
Nat Genet ; 54(9): 1293-1304, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654973

RESUMO

The substantial phenotypic heterogeneity in autism limits our understanding of its genetic etiology. To address this gap, here we investigated genetic differences between autistic individuals (nmax = 12,893) based on core and associated features of autism, co-occurring developmental disabilities and sex. We conducted a comprehensive factor analysis of core autism features in autistic individuals and identified six factors. Common genetic variants were associated with the core factors, but de novo variants were not. We found that higher autism polygenic scores (PGS) were associated with lower likelihood of co-occurring developmental disabilities in autistic individuals. Furthermore, in autistic individuals without co-occurring intellectual disability (ID), autism PGS are overinherited by autistic females compared to males. Finally, we observed higher SNP heritability for autistic males and for autistic individuals without ID. Deeper phenotypic characterization will be critical in determining how the complex underlying genetics shape cognition, behavior and co-occurring conditions in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Cognição , Feminino , Humanos , Deficiência Intelectual/genética , Masculino
10.
Nat Genet ; 54(9): 1284-1292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654974

RESUMO

The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads of rare and polygenic risk are inversely correlated in cases and greater in females than in males, consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare inherited variants and polygenic scores were associated with various dimensions of symptom severity in children and parents. Parental age effects on risk for ASD in offspring were attributable to a combination of genetic mechanisms, including DNMs that accumulate in the paternal germline and inherited risk that influences behavior in parents. Genes implicated by rare variants were enriched in excitatory and inhibitory neurons compared with genes implicated by common variants. Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic factors that impact different neurodevelopmental processes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Criança , Família , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Herança Multifatorial/genética
12.
Am J Hum Genet ; 109(3): 405-416, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143757

RESUMO

Unknown SNP-to-gene regulatory architecture complicates efforts to link noncoding GWAS associations with genes implicated by sequencing or functional studies. eQTLs are often used to link SNPs to genes, but expression in bulk tissue explains a small fraction of disease heritability. A simple but successful approach has been to link SNPs with nearby genes via base pair windows, but genes may often be regulated by SNPs outside their window. We propose the abstract mediation model (AMM) to estimate (1) the fraction of heritability mediated by the closest or kth-closest gene to each SNP and (2) the mediated heritability enrichment of a gene set (e.g., genes with rare-variant associations). AMM jointly estimates these quantities by matching the decay in SNP enrichment with distance from genes in the gene set. Across 47 complex traits and diseases, we estimate that the closest gene to each SNP mediates 27% (SE: 6%) of heritability and that a substantial fraction is mediated by genes outside the ten closest. Mendelian disease genes are strongly enriched for common-variant heritability; for example, just 21 dyslipidemia genes mediate 25% of LDL heritability (211× enrichment, p = 0.01). Among brain-related traits, genes involved in neurodevelopmental disorders are only about 4× enriched, but gene expression patterns are highly informative, as they have detectable differences in per-gene heritability even among weakly brain-expressed genes.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Regulação da Expressão Gênica/genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
13.
Cell Genom ; 2(6): 100134, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36778135

RESUMO

Autism spectrum disorder (ASD) is diagnosed three to four times more frequently in males than in females. Genetic studies of rare variants support a female protective effect (FPE) against ASD. However, sex differences in common inherited genetic risk for ASD are less studied, particularly within families. Leveraging the Danish iPSYCH resource, we found siblings of female ASD cases (n = 1,707) had higher rates of ASD than siblings of male ASD cases (n = 6,270; p < 1.0 × 10-10). In the Simons Simplex and SPARK collections, mothers of ASD cases (n = 7,436) carried more polygenic risk for ASD than fathers of ASD cases (n = 5,926; 0.08 polygenic risk score [PRS] SD; p = 7.0 × 10-7). Further, male unaffected siblings under-inherited polygenic risk (n = 1,519; p = 0.03). Using both epidemiologic and genetic approaches, our findings strongly support an FPE against ASD's common inherited influences.

14.
Eur Psychiatry ; 64(1): e29, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33785081

RESUMO

BACKGROUND: Questions remain regarding whether genetic influences on early life psychopathology overlap with cognition and show developmental variation. METHODS: Using data from 9,421 individuals aged 8-21 from the Philadelphia Neurodevelopmental Cohort, factors of psychopathology were generated using a bifactor model of item-level data from a psychiatric interview. Five orthogonal factors were generated: anxious-misery (mood and anxiety), externalizing (attention deficit hyperactivity and conduct disorder), fear (phobias), psychosis-spectrum, and a general factor. Genetic analyses were conducted on a subsample of 4,662 individuals of European American ancestry. A genetic relatedness matrix was used to estimate heritability of these factors, and genetic correlations with executive function, episodic memory, complex reasoning, social cognition, motor speed, and general cognitive ability. Gene × Age analyses determined whether genetic influences on these factors show developmental variation. RESULTS: Externalizing was heritable (h2 = 0.46, p = 1 × 10-6), but not anxious-misery (h2 = 0.09, p = 0.183), fear (h2 = 0.04, p = 0.337), psychosis-spectrum (h2 = 0.00, p = 0.494), or general psychopathology (h2 = 0.21, p = 0.040). Externalizing showed genetic overlap with face memory (ρg = -0.412, p = 0.004), verbal reasoning (ρg = -0.485, p = 0.001), spatial reasoning (ρg = -0.426, p = 0.010), motor speed (ρg = 0.659, p = 1x10-4), verbal knowledge (ρg = -0.314, p = 0.002), and general cognitive ability (g)(ρg = -0.394, p = 0.002). Gene × Age analyses revealed decreasing genetic variance (γg = -0.146, p = 0.004) and increasing environmental variance (γe = 0.059, p = 0.009) on externalizing. CONCLUSIONS: Cognitive impairment may be a useful endophenotype of externalizing psychopathology and, therefore, help elucidate its pathophysiological underpinnings. Decreasing genetic variance suggests that gene discovery efforts may be more fruitful in children than adolescents or young adults.


Assuntos
Disfunção Cognitiva , Transtornos Psicóticos , Adolescente , Criança , Cognição , Função Executiva , Humanos , Psicopatologia , Transtornos Psicóticos/genética , Adulto Jovem
15.
Biol Psychiatry ; 89(5): 417-418, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541522
16.
Mol Psychiatry ; 26(2): 656-665, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-30644433

RESUMO

Successful cognitive development between childhood and adulthood has important consequences for future mental and physical wellbeing, as well as occupational and financial success. Therefore, delineating the genetic influences underlying changes in cognitive abilities during this developmental period will provide important insights into the biological mechanisms that govern both typical and atypical maturation. Using data from the Philadelphia Neurodevelopmental Cohort (PNC), a large population-based sample of individuals aged 8 to 21 years old (n = 6634), we used an empirical relatedness matrix to establish the heritability of general and specific cognitive functions and determine if genetic factors influence cognitive maturation (i.e., Gene × Age interactions) between childhood and early adulthood. We found that neurocognitive measures across childhood and early adulthood were significantly heritable. Moreover, genetic variance on general cognitive ability, or g, increased significantly between childhood and early adulthood. Finally, we did not find evidence for decay in genetic correlation on neurocognition throughout childhood and adulthood, suggesting that the same genetic factors underlie cognition at different ages throughout this developmental period. Establishing significant Gene × Age interactions in neurocognitive functions across childhood and early adulthood is a necessary first step in identifying genes that influence cognitive development, rather than genes that influence cognition per se. Moreover, since aberrant cognitive development confers risk for several psychiatric disorders, further examination of these Gene × Age interactions may provide important insights into their etiology.


Assuntos
Cognição , Transtornos Mentais , Adolescente , Adulto , Criança , Estudos de Coortes , Humanos , Adulto Jovem
17.
Genome Med ; 12(1): 28, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183904

RESUMO

BACKGROUND: Classifying pathogenicity of missense variants represents a major challenge in clinical practice during the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs). While orthologous gene conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes belong to gene families. The use of gene family information for disease gene discovery and variant interpretation has not yet been investigated on a genome-wide scale. We empirically evaluate whether paralog-conserved or non-conserved sites in human gene families are important in NDDs. METHODS: Gene family information was collected from Ensembl. Paralog-conserved sites were defined based on paralog sequence alignments; 10,068 NDD patients and 2078 controls were statistically evaluated for de novo variant burden in gene families. RESULTS: We demonstrate that disease-associated missense variants are enriched at paralog-conserved sites across all disease groups and inheritance models tested. We developed a gene family de novo enrichment framework that identified 43 exome-wide enriched gene families including 98 de novo variant carrying genes in NDD patients of which 28 represent novel candidate genes for NDD which are brain expressed and under evolutionary constraint. CONCLUSION: This study represents the first method to incorporate gene family information into a statistical framework to interpret variant data for NDDs and to discover new NDD-associated genes.


Assuntos
Deficiências do Desenvolvimento/genética , Estudo de Associação Genômica Ampla/métodos , Família Multigênica , Mutação de Sentido Incorreto , Loci Gênicos , Filogenia , Homologia de Sequência
18.
Nat Neurosci ; 22(12): 1961-1965, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768057

RESUMO

The exome sequences of approximately 8,000 children with autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) and 5,000 controls were analyzed, finding that individuals with ASD and individuals with ADHD had a similar burden of rare protein-truncating variants in evolutionarily constrained genes, both significantly higher than controls. This motivated a combined analysis across ASD and ADHD, identifying microtubule-associated protein 1A (MAP1A) as a new exome-wide significant gene conferring risk for childhood psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos/genética , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Espectro Autista/complicações , Estudos de Casos e Controles , Exoma/genética , Feminino , Humanos , Masculino
19.
Nat Commun ; 10(1): 3043, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292440

RESUMO

There are established associations between advanced paternal age and offspring risk for psychiatric and developmental disorders. These are commonly attributed to genetic mutations, especially de novo single nucleotide variants (dnSNVs), that accumulate with increasing paternal age. However, the actual magnitude of risk from such mutations in the male germline is unknown. Quantifying this risk would clarify the clinical significance of delayed paternity. Using parent-child trio whole-exome-sequencing data, we estimate the relationship between paternal-age-related dnSNVs and risk for five disorders: autism spectrum disorder (ASD), congenital heart disease, neurodevelopmental disorders with epilepsy, intellectual disability and schizophrenia (SCZ). Using Danish registry data, we investigate whether epidemiologic associations between each disorder and older fatherhood are consistent with the estimated role of dnSNVs. We find that paternal-age-related dnSNVs confer a small amount of risk for these disorders. For ASD and SCZ, epidemiologic associations with delayed paternity reflect factors that may not increase with age.


Assuntos
Testes Genéticos , Modelos Genéticos , Idade Paterna , Adulto , Fatores Etários , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Criança , Dinamarca/epidemiologia , Epilepsia/epidemiologia , Epilepsia/genética , Feminino , Cardiopatias Congênitas/epidemiologia , Cardiopatias Congênitas/genética , Humanos , Incidência , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Prevalência , Sistema de Registros/estatística & dados numéricos , Medição de Risco/métodos , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Sequenciamento do Exoma
20.
Biol Psychiatry ; 86(2): 97-109, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737014

RESUMO

Genetics provides two major opportunities for understanding human disease-as a transformative line of etiological inquiry and as a biomarker for heritable diseases. In psychiatry, biomarkers are very much needed for both research and treatment, given the heterogenous populations identified by current phenomenologically based diagnostic systems. To date, however, useful and valid biomarkers have been scant owing to the inaccessibility and complexity of human brain tissue and consequent lack of insight into disease mechanisms. Genetic biomarkers are therefore especially promising for psychiatric disorders. Genome-wide association studies of common diseases have matured over the last decade, generating the knowledge base for increasingly informative individual-level genetic risk prediction. In this review, we discuss fundamental concepts involved in computing genetic risk with current methods, strengths and weaknesses of various approaches, assessments of utility, and applications to various psychiatric disorders and related traits. Although genetic risk prediction has become increasingly straightforward to apply and common in published studies, there are important pitfalls to avoid. At present, the clinical utility of genetic risk prediction is still low; however, there is significant promise for future clinical applications as the ancestral diversity and sample sizes of genome-wide association studies increase. We discuss emerging data and methods aimed at improving the value of genetic risk prediction for disentangling disease mechanisms and stratifying subjects for epidemiological and clinical studies. For all applications, it is absolutely critical that polygenic risk prediction is applied with appropriate methodology and control for confounding to avoid repeating some mistakes of the candidate gene era.


Assuntos
Transtornos Mentais/genética , Herança Multifatorial/genética , Predisposição Genética para Doença , Testes Genéticos , Estudo de Associação Genômica Ampla , Humanos , Valor Preditivo dos Testes , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...