Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Heart Rhythm ; 20(5): 791-792, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37120288
2.
Prog Biophys Mol Biol ; 166: 22-28, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853595

RESUMO

This article reviews work over the past three decades that is related to the contribution of the pacemaker current, If, to basal and autonomically regulated spontaneous rate in the sinoatrial node. It also addresses how the actions of the pacemaker current relate to those of Ca homeostasis with respect to basal and autonomically regulated rhythm. In this regard, it explores the relative contributions of Ca-sensitive and Ca-insensitive isoforms of adenylyl cyclase to sinoatrial node automaticity. The latter studies include previously unpublished work making use of mice in which both the type 1 and type 8 Ca-sensitive adenylyl cyclase isoforms were knocked out. These studies indicate that the pacemaker current and the L-type Ca current are distinctly influenced by Ca-sensitive and insensitive adenylyl cyclase isoforms.


Assuntos
Marca-Passo Artificial , Nó Sinoatrial , Potenciais de Ação , Adenilil Ciclases , Animais , Cálcio , Camundongos , Isoformas de Proteínas
3.
PLoS One ; 12(12): e0189818, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29281682

RESUMO

In vivo, cardiomyocytes comprise a heterogeneous population of contractile cells defined by unique electrophysiologies, molecular markers and morphologies. The mechanisms directing myocardial cells to specific sub-lineages remain poorly understood. Here we report that overexpression of TGFß-Activated Kinase (TAK1/Map3k7) in mouse embryonic stem (ES) cells faithfully directs myocardial differentiation of embryoid body (EB)-derived cardiac cells toward the sinoatrial node (SAN) lineage. Most cardiac cells in Map3k7-overexpressing EBs adopt markers, cellular morphologies, and electrophysiological behaviors characteristic of the SAN. These data, in addition to the fact that Map3k7 is upregulated in the sinus venous-the source of cells for the SAN-suggest that Map3k7 may be an endogenous regulator of the SAN fate.


Assuntos
Diferenciação Celular/genética , MAP Quinase Quinase Quinases/genética , Miócitos Cardíacos/citologia , Nó Sinoatrial/citologia , Animais , Células Cultivadas , Vetores Genéticos , Lentivirus/genética , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
4.
Nat Commun ; 7: 10312, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26785135

RESUMO

The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Miócitos Cardíacos/citologia , Diferenciação Celular/fisiologia , Conexinas/metabolismo , Canal de Potássio ERG1 , Estimulação Elétrica , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Células-Tronco Pluripotentes/citologia
5.
Heart Rhythm ; 13(5): 1172-1181, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26775142

RESUMO

Purkinje fibers/cells continue to be a focus of arrhythmologists. Here we review several new ideas that have emerged in the literature and fold them into important new points. These points include the following: some proteins in Purkinje cells are specific to Purkinjes; pacemaker function in Purkinje may be similar to that of the sinus node cell; sink-source concerns about tracts/sheets of Purkinje fibers; role of Ito in arrhythmias; and genetic lesions in Purkinjes and their high impact on cardiac rhythm. Although new ideas about the remodeled Purkinje cell are not the focus of this review, one can easily imagine how Purkinjes and their function may be altered in diseased hearts.


Assuntos
Arritmias Cardíacas/fisiopatologia , Fenômenos Eletrofisiológicos , Ramos Subendocárdicos , Animais , Técnicas Eletrofisiológicas Cardíacas , Humanos , Miócitos Cardíacos/fisiologia , Ramos Subendocárdicos/fisiologia , Ramos Subendocárdicos/fisiopatologia
6.
Trends Cardiovasc Med ; 25(8): 661-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26001958

RESUMO

Since its introduction into clinical practice, electronic pacing has saved many lives. Despite continuous improvements, electronic pacemakers have important shortcomings, which stimulated the development of biological alternatives. Biological pacemakers generate the cardiac impulse using genes or cells to treat bradycardias. Over the past decade, significant improvements have been made in biological pacemakers, but issues remain in relation to long-term outcomes and safety. Concurrently, efforts to improve electronic pacemakers have also intensified. Whether new generations of electronic pacemakers will erase lingering concerns with regard to electronic pacing or whether biologicals will ultimately supplement or supplant electronics remains to be seen.


Assuntos
Arritmias Cardíacas/terapia , Estimulação Cardíaca Artificial/tendências , Marca-Passo Artificial/tendências , Relógios Biológicos/fisiologia , Estimulação Cardíaca Artificial/normas , Previsões , Humanos , Marca-Passo Artificial/normas
7.
Pharmacol Rev ; 67(2): 368-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25733770

RESUMO

Since the first reports on the isolation and differentiation of stem cells, and in particular since the early success in driving these cells down a cardiac lineage, there has been interest in the potential of such preparations in cardiac regenerative therapy. Much of the focus of such research has been on improving mechanical function after myocardial infarction; however, electrophysiologic studies of these preparations have revealed a heterogeneous mix of action potential characteristics, including some described as "pacemaker" or "nodal-like," which in turn led to interest in the therapeutic potential of these preparations in the treatment of rhythm disorders; several proof-of-concept studies have used these cells to create a biologic alternative to electronic pacemakers. Further, there are additional potential applications of a preparation of pacemaker cells derived from stem cells, for example, in high-throughput screens of new chronotropic agents. All such applications require reasonably efficient methods for selecting or enriching the "nodal-like" cells, however, which in turn depends on first defining what constitutes a nodal-like cell since not all pacemaking cells are necessarily of nodal lineage. This review discusses the current state of the field in terms of characterizing sinoatrial-like cardiomyocytes derived from embryonic and induced pluripotent stem cells, markers that might be appropriate based on the current knowledge of the gene program leading to sinoatrial node development, what functional characteristics might be expected and desired based on studies of the sinoatrial node, and recent efforts at enrichment and selection of nodal-like cells.


Assuntos
Arritmia Sinusal/terapia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Miócitos Cardíacos/citologia , Nó Sinoatrial/citologia , Transplante de Células-Tronco , Animais , Arritmia Sinusal/fisiopatologia , Sistema Nervoso Autônomo/fisiologia , Sistema Nervoso Autônomo/fisiopatologia , Pesquisa Biomédica/tendências , Cardiotônicos/farmacologia , Diferenciação Celular , Ensaios de Triagem em Larga Escala/tendências , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Nó Sinoatrial/embriologia , Nó Sinoatrial/inervação , Nó Sinoatrial/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 308(2): H126-34, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25437921

RESUMO

Atrial fibrillation (AF) is a common arrhythmia with significant morbidities and only partially adequate therapeutic options. AF is associated with atrial remodeling processes, including changes in the expression and function of ion channels and signaling pathways. TWIK protein-related acid-sensitive K+ channel (TASK)-1, a two-pore domain K+ channel, has been shown to contribute to action potential repolarization as well as to the maintenance of resting membrane potential in isolated myocytes, and TASK-1 inhibition has been associated with the induction of perioperative AF. However, the role of TASK-1 in chronic AF is unknown. The present study investigated the function, expression, and phosphorylation of TASK-1 in chronic AF in atrial tissue from chronically paced canines and in human subjects. TASK-1 current was present in atrial myocytes isolated from human and canine hearts in normal sinus rhythm but was absent in myocytes from humans with AF and in canines after the induction of AF by chronic tachypacing. The addition of phosphatase to the patch pipette rescued TASK-1 current from myocytes isolated from AF hearts, indicating that the change in current is phosphorylation dependent. Western blot analysis showed that total TASK-1 protein levels either did not change or increased slightly in AF, despite the absence of current. In studies of perioperative AF, we have shown that phosphorylation of TASK-1 at Thr383 inhibits the channel. However, phosphorylation at this site was unchanged in atrial tissue from humans with AF or in canines with chronic pacing-induced AF. We conclude that phosphorylation-dependent inhibition of TASK-1 is associated with AF, but the phosphorylation site responsible for this inhibition remains to be identified.


Assuntos
Potenciais de Ação , Fibrilação Atrial/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Processamento de Proteína Pós-Traducional , Idoso , Animais , Estudos de Casos e Controles , Células Cultivadas , Cães , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/genética , Fosforilação , Canais de Potássio de Domínios Poros em Tandem/genética
9.
J Cardiovasc Pharmacol Ther ; 19(5): 426-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24742766

RESUMO

Efforts to use gene therapy to create a biological pacemaker as an adjunct or replacement of electronic pacemakers have been ongoing for about 15 years. For the past decade, most of these efforts have focused on the hyperpolarization-activated cyclic nucleotide gated-(HCN) gene family of channels alone or in combination with other genes. The HCN gene family is the molecular correlate of the cardiac pacemaker current, If. It is a suitable basis for a biological pacemaker because it generates a depolarizing inward current primarily during diastole and is directly regulated by cyclic adenosine monophosphate (cAMP), thereby incorporating autonomic responsiveness. However, biological pacemakers based either on native HCN channels or on mutated HCN channels designed to optimize biophysical characteristics have failed to attain the desired basal and maximal physiological heart rates in large animals. More recent work has explored dual gene therapy approaches, combining an HCN variant with another gene to reduce outward current, increase an additional inward current, or enhance cAMP synthesis. Several of these dual gene therapy approaches have demonstrated appropriate basal and maximal heart rates with little or no reliance on a backup electronic pacemaker during the period of study. Future research, besides examining the efficacy of other gene combinations, will need to consider the additional issues of safety and persistence of the viral vectors often used to deliver these genes to a specific cardiac region.


Assuntos
Arritmias Cardíacas/terapia , Fármacos Cardiovasculares/farmacologia , Terapia Genética/métodos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/farmacologia , Animais , Técnicas Eletrofisiológicas Cardíacas , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Nó Sinoatrial/fisiologia
11.
Cardiovasc Res ; 100(1): 160-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23787003

RESUMO

AIMS: Although the right atrium (RA contains subsidiary atrial pacemaker (SAP) tissue that can take over from the sinoatrial node (SAN) in sick sinus syndrome (SSS), SAP tissue is bradycardic. Little is known about SAP tissue and one aim of the study was to characterize ion channel expression to obtain insight into SAP pacemaker mechanisms. A second aim was to determine whether HCN over-expression (a 'biopacemaker'-like strategy) can accelerate the pacemaker rate producing a pacemaker that is similar in nature to the SAN. METHODS AND RESULTS: SAP tissue was isolated from the rat and the leading pacemaker site was characterized. Cell size at the leading pacemaker site in the SAP was smaller than in the RA and comparable to that in the SAN. mRNA levels showed the SAP to be similar to, but distinct from, the SAN. For example, in the SAN and SAP, expression of Tbx3 and HCN1 was higher and Nav1.5 and Cx43 lower than in the RA. Organ-cultured SAP tissue beat spontaneously, but at a slower rate than the SAN. Adenovirus-mediated gene transfer of HCN2 and the chimeric protein HCN212 significantly increased the pacemaker rate of the SAP close to that of the native SAN, but HCN4 was ineffective. CONCLUSION: SAP tissue near the inferior vena cava is bradycardic, but shares characteristics with the SAN. Pacing can be accelerated by the over-expression of HCN2 or HCN212. This provides proof of concept for the use of SAP tissue as a substrate for biopacemaking in the treatment of SSS.


Assuntos
Canais de Cálcio/fisiologia , Estimulação Cardíaca Artificial , Átrios do Coração , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Marca-Passo Artificial , Canais de Potássio/genética , Canais de Potássio/fisiologia , RNA Mensageiro/análise , Ratos , Canais de Sódio/fisiologia , Transgenes
12.
J Cardiovasc Electrophysiol ; 24(9): 1021-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23631727

RESUMO

BACKGROUND: Sinus node (SN) dysfunction is observed in some long-QT syndrome (LQTS) patients, but has not been studied as a function of LQTS genotype. LQTS6 involves mutations in the hERG ß-subunit MiRP1, which also interacts with hyperpolarization-activated, cyclic nucleotide gated (HCN) channels-the molecular correlate of SN pacemaker current (If ). An LQTS registry search identified a 55-year male with M54T MiRP1 mutation, history of sinus bradycardia (39-56 bpm), and prolonged QTc. OBJECTIVE: We tested if LQTS6 incorporates sinus bradycardia due to abnormal If . METHODS: We transiently co-transfected neonatal rat ventricular myocytes (to study currents in a myocyte background) with human HCN4 (hHCN4, primary SN isoform) or human HCN2 (hHCN2) and one of the following: empty vector, wild-type hMiRP1 (WT), M54T hMiRP1 (M54T). Current amplitude, voltage dependence, and kinetics were measured by whole cell patch clamp. RESULTS: M54T co-expression decreased HCN4 current density by 80% compared to hHCN4 alone or with WT, and also slowed HCN4 activation at physiologically relevant voltages. Neither WT nor M54T altered HCN4 voltage dependence. A computer simulation predicts that these changes in HCN4 current would decrease rate and be additive with published effects of M54T mutation on hERG kinetics on rate. CONCLUSIONS: We conclude that M54T LQTS6 mutation can cause sinus bradycardia through effects on both hERG and HCN currents. Patients with other LQTS6 mutations should be examined for SN dysfunction, and the effect on HCN current determined.


Assuntos
Relógios Biológicos/genética , Bradicardia/diagnóstico , Bradicardia/genética , Mutação/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Cocultura , Regulação para Baixo/genética , Humanos , Masculino , Pessoa de Meia-Idade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Ratos , Ratos Wistar
13.
J Am Coll Cardiol ; 61(11): 1192-201, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23395072

RESUMO

OBJECTIVES: This study sought to test the hypothesis that hyperpolarization-activated cyclic nucleotide-gated (HCN)-based biological pacing might be improved significantly by hyperpolarizing the action potential (AP) threshold via coexpression of the skeletal muscle sodium channel 1 (SkM1). BACKGROUND: Gene-based biological pacemakers display effective in vivo pacemaker function. However, approaches used to date have failed to manifest optimal pacemaker properties, defined as basal beating rates of 60 to 90 beats/min, a brisk autonomic response achieving maximal rates of 130 to 160 beats/min, and low to absent electronic backup pacing. METHODS: We implanted adenoviral SkM1, HCN2, or HCN2/SkM1 constructs into left bundle branches (LBB) or left ventricular (LV) epicardium of atrioventricular-blocked dogs. RESULTS: During stable peak gene expression on days 5 to 7, HCN2/SkM1 LBB-injected dogs showed highly stable in vivo pacemaker activity superior to SkM1 or HCN2 alone and superior to LV-implanted dogs with regard to beating rates (resting approximately 80 beats/min; maximum approximately 130 beats/min), no dependence on electronic backup pacing, and enhanced modulation of pacemaker function during circadian rhythm or epinephrine infusion. In vitro isolated LV of dogs overexpressing SkM1 manifested a significantly more negative AP threshold. CONCLUSIONS: LBB-injected HCN2/SkM1 potentially provides a more clinically suitable biological pacemaker strategy than other reported constructs. This superiority is attributable to the more negative AP threshold and injection into the LBB.


Assuntos
Técnicas de Transferência de Genes , Sistema de Condução Cardíaco , Frequência Cardíaca/fisiologia , Canais Iônicos/genética , Proteínas Musculares/genética , Animais , Cães , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização
14.
J Biol Chem ; 288(4): 2829-38, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23229553

RESUMO

Peri-operative atrial fibrillation (peri-op AF) is a common complication following thoracic surgery. This arrhythmia is thought to be triggered by an inflammatory response and can be reproduced in various animal models. Previous work has shown that the lipid inflammatory mediator, platelet-activating factor (PAF), synthesized by activated neutrophils, can induce atrial and ventricular arrhythmias as well as repolarization abnormalities in isolated ventricular myocytes. We have previously shown that carbamylated PAF-induced repolarization abnormalities result from the protein kinase C (PKC) ε-dependent phosphorylation of the two-pore domain potassium channel TASK-1. We now demonstrate that canine peri-op AF is associated with the phosphorylation-dependent loss of TASK-1 current. Further studies identified threonine 383 in the C terminus of human and canine TASK-1 as the phosphorylation site required for PAF-dependent inhibition of the channel. Using a novel phosphorylation site-specific antibody targeting the phosphorylated channel, we have determined that peri-op AF is associated with the loss of TASK-1 current and increased phosphorylation of TASK-1 at this site.


Assuntos
Fibrilação Atrial/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Cães , Eletrofisiologia , Humanos , Inflamação , Masculino , Células Musculares/metabolismo , Período Perioperatório , Peroxidase/metabolismo , Fosforilação , Fator de Ativação de Plaquetas/metabolismo , Proteína Quinase C/metabolismo , Treonina/química
16.
Circulation ; 126(5): 528-36, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22753192

RESUMO

BACKGROUND: Biological pacing performed solely via HCN2 gene transfer in vivo results in relatively slow idioventricular rates and only moderate autonomic responsiveness. We induced biological pacing using the Ca(2+)-stimulated adenylyl cyclase AC1 gene expressed alone or in combination with HCN2 and compared outcomes with those with single-gene HCN2 transfer. METHODS AND RESULTS: We implanted adenoviral HCN2, AC1, or HCN2/AC1 constructs into the left bundle branches of atrioventricular-blocked dogs. During steady-state gene expression (days 5-7), differences between AC1, HCN2/AC1, and HCN2 alone were evident in basal beating rate, escape time, and dependence on electronic backup pacing. In HCN2, AC1, and HCN2/AC1, these parameters were as follows: basal beating rate: 50±1.5, 60±5.0, and 129±28.9 bpm (P<0.05 for HCN2/AC1 versus HCN2 or AC1 alone), respectively; escape time: 2.4±0.2, 1.3±0.2, and 1.1±.0.4 seconds (P<0.05 for AC1 and HCN2/AC1 versus HCN2); and percent electronic beats: 34±8%, 2±1%, and 6±2% (P<0.05 for AC1 and HCN2/AC1 versus HCN2). Instantaneous (SD1) and long-term (SD2) heart rate variability and circadian rhythm analyzed via 24-hour Holter recordings showed a shift toward greater sensitivity to parasympathetic modulation in animals injected with AC1 and a high degree of sympathetic modulation in animals injected with HCN2/AC1. CONCLUSION: AC1 or HCN2/AC1 overexpression in left bundle branches provides highly efficient biological pacing and greater sensitivity to autonomic modulation than HCN2 alone.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/fisiologia , Bloqueio Atrioventricular/terapia , Terapia Genética , Sistema de Condução Cardíaco/fisiologia , Canais Iônicos/genética , Canais Iônicos/fisiologia , Adenoviridae/genética , Animais , Bloqueio Atrioventricular/etiologia , Benzazepinas/farmacologia , Ablação por Cateter/efeitos adversos , Ritmo Circadiano/fisiologia , Cães , Eletrocardiografia , Técnicas de Transferência de Genes , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ivabradina , Modelos Animais , Bloqueadores dos Canais de Potássio/farmacologia
17.
Circ Arrhythm Electrophysiol ; 5(4): 831-40, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22722661

RESUMO

BACKGROUND: In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel is largely inactivated, contributing to slow conduction and reentry. We have demonstrated that adenoviral delivery of the skeletal muscle Na(+) channel (SkM1) to epicardial border zones normalizes conduction and reduces induction of ventricular tachycardia/ventricular fibrillation. We now studied the impact of canine mesenchymal stem cells (cMSCs) in delivering SkM1. METHODS AND RESULTS: cMSCs were isolated and transfected with SkM1. Coculture experiments showed cMSC/SkM1 but not cMSC alone and maintained fast conduction at depolarized potentials. We studied 3 groups in the canine 7d infarct: sham, cMSC, and cMSC/SkM1. In vivo epicardial border zones electrograms were broad and fragmented in sham, narrower in cMSCs, and narrow and unfragmented in cMSC/SkM1 (P<0.05). During programmed electrical stimulation of epicardial border zones, QRS duration in cMSC/SkM1 was shorter than in cMSC and sham (P<0.05). Programmed electrical stimulation-induced ventricular tachycardia/ventricular fibrillation was equivalent in all groups (P>0.05). CONCLUSION: cMSCs provide efficient delivery of SkM1 current. The interventions performed (cMSCs or cMSC/SkM1) were neither antiarrhythmic nor proarrhythmic. Comparing outcomes with cMSC/SkM1 and viral gene delivery highlights the criticality of the delivery platform to SkM1 antiarrhythmic efficacy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Proteínas Musculares/metabolismo , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Taquicardia Ventricular/prevenção & controle , Fibrilação Ventricular/prevenção & controle , Potenciais de Ação , Animais , Animais Recém-Nascidos , Estimulação Cardíaca Artificial , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Cães , Técnicas Eletrofisiológicas Cardíacas , Humanos , Proteínas Musculares/genética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.5 , Ratos , Ratos Sprague-Dawley , Canais de Sódio/genética , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Transfecção , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/genética , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia
18.
J Cardiovasc Pharmacol ; 60(1): 88-99, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526298

RESUMO

The voltage-gated Na+ channel is a critical determinant of the action potential (AP) upstroke. Increasing Na+ conductance may speed AP propagation. In this study, we propose use of the skeletal muscle Na+ channel SkM1 as a more favorable gene than the cardiac isoform SCN5A to enhance conduction velocity in depolarized cardiac tissue. We used cells that electrically coupled with cardiac myocytes as a delivery platform to introduce the Na+ channels. Human embryonic kidney 293 cells were stably transfected with SkM1 or SCN5A. SkM1 had a more depolarized (18 mV shift) inactivation curve than SCN5A. We also found that SkM1 recovered faster from inactivation than SCN5A. When coupled with SkM1 expressing cells, cultured myocytes showed an increase in the dV/dtmax of the AP. Expression of SCN5A had no such effect. In an in vitro cardiac syncytium, coculture of neonatal cardiac myocytes with SkM1 expressing but not SCN5A expressing cells significantly increased the conduction velocity under both normal and depolarized conditions. In an in vitro reentry model induced by high-frequency stimulation, expression of SkM1 also enhanced angular velocity of the induced reentry. These results suggest that cells carrying a Na+ channel with a more depolarized inactivation curve can improve cardiac excitability and conduction in depolarized tissues.


Assuntos
Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação , Animais , Animais Recém-Nascidos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cães , Feminino , Terapia Genética/métodos , Células HEK293 , Sistema de Condução Cardíaco/metabolismo , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transfecção
19.
J Mol Cell Cardiol ; 52(6): 1233-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22484253

RESUMO

Previous observations show that ß-adrenergic modulation of pacemaker current (I(f)) in sinoatrial node (SAN) cells is impaired by disruption of normal Ca(2+)-homeostasis with ryanodine or BAPTA. Recently, the presence of Ca(2+)-activated adenylyl cyclase (AC) 1 was reported in SAN, and was proposed as a possible mechanism of Ca(2+)-dependence of ß-adrenergic modulation. However, direct evidence that pacemaker (HCN) channels can be regulated by Ca(2+)-activated AC and that such regulation introduces Ca(2+) dependence, is lacking. Here we co-expressed AC1 or AC6 with HCN2 in neonatal rat ventricular myocytes, which lack AC1. Although both isoforms have equivalent expression level and ability to interact with HCN2, only AC1 increases intracellular cAMP content, accelerates spontaneous beating rate and modifies HCN2 biophysics. Measured HCN2 current in the AC1 group activated ~10mV more positive than in GFP or AC6. The ß-adrenergic agonist isoproterenol induced a further positive shift under control conditions, but failed to do so after pretreatment with the Ca(2+) chelator BAPTA. In the AC6 group, isoproterenol shifted the HCN2 activation relation to a similar extent in the absence and presence of BAPTA. Thus, AC1 but not AC6 over-expression introduces Ca(2+)-sensitivity to the ß-adrenergic response of HCN2. These results demonstrate physical and functional interaction between AC isoforms and the HCN2 pacemaker channel and support a key role of Ca(2+) activated AC1 as a molecular mechanism in Ca(2+)-dependent modulation of ß-adrenergic response of heart rate.


Assuntos
Adenilil Ciclases/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Cálcio/metabolismo , Canais Iônicos/agonistas , Adenilil Ciclases/genética , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Expressão Gênica , Frequência Cardíaca/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canais de Potássio , Ligação Proteica , Ratos , Ratos Wistar , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/metabolismo
20.
Cardiovasc Res ; 94(3): 450-9, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22374989

RESUMO

AIMS: Reentry accounts for most life-threatening arrhythmias, complicating myocardial infarction, and therapies that consistently prevent reentry from occurring are lacking. In this study, we compare antiarrhythmic effects of gene transfer of green fluorescent protein (GFP; sham), the skeletal muscle sodium channel (SkM1), the liver-specific connexin (Cx32), and SkM1/Cx32 in the subacute canine infarct. METHODS AND RESULTS: Immediately after ligation of the left anterior descending artery, viral constructs were implanted in the epicardial border zone (EBZ). Five to 7 days later, efficient restoration of impulse propagation (narrow QRS and local electrogram duration) occurred in SkM1, Cx32, and SkM1/Cx32 groups (P< 0.05 vs. GFP). Programmed electrical stimulation from the EBZ induced sustained ventricular tachycardia (VT)/ventricular fibrillation (VF) in 15/22 GFP dogs vs. 2/12 SkM1, 6/14 Cx32, and 8/10 SkM1/Cx32 (P< 0.05 SkM1 vs. GFP). GFP, SkM1, and SkM1/Cx32 had predominantly polymorphic VT/VF, whereas in Cx32 dogs, monomorphic VT predominated (P< 0.05 for Cx32 vs. GFP). Tetrazolium red staining showed significantly larger infarcts in Cx32- vs. GFP-treated animals (P< 0.05). CONCLUSION: Whereas SkM1 gene transfer reduces the incidence of inducible VT/VF, Cx32 therapy to improve gap junctional conductance results in larger infarct size, a different VT morphology, and no antiarrhythmic efficacy.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Proteínas Musculares/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Canais de Sódio/metabolismo , Fibrilação Ventricular/tratamento farmacológico , Animais , Antiarrítmicos/uso terapêutico , Conexinas/genética , Cães , Estimulação Elétrica , Eletrocardiografia , Masculino , Camundongos , Proteínas Musculares/genética , Ratos , Canais de Sódio/genética , Fibrilação Ventricular/fisiopatologia , Proteína beta-1 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...