Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 273, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472392

RESUMO

Membrane-enclosed organelles are defining features of eukaryotes in distinguishing these organisms from prokaryotes. Specification of distinct membranes is critical to assemble and maintain discrete compartments. Small GTPases and their regulators are the signaling molecules that drive membrane-modifying machineries to the desired location. These signaling molecules include Rab and Rag GTPases, roadblock and longin domain proteins, and TRAPPC3-like proteins. Here, we take a structural approach to assess the relatedness of these eukaryotic-like proteins in Asgard archaea, the closest known prokaryotic relatives to eukaryotes. We find that the Asgard archaea GTPase core domains closely resemble eukaryotic Rabs and Rags. Asgard archaea roadblock, longin and TRAPPC3 domain-containing proteins form dimers similar to those found in the eukaryotic TRAPP and Ragulator complexes. We conclude that the emergence of these protein architectures predated eukaryogenesis, however further adaptations occurred in proto-eukaryotes to allow these proteins to regulate distinct internal membranes.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/química , Archaea/metabolismo , Transporte Proteico
2.
J Mol Biol ; 436(6): 168495, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360090

RESUMO

Under prebiotic conditions, peptides are capable of self-replication through a structure-based template-assisted mechanism when they form amyloids. Furthermore, peptide amyloids can spontaneously form inside fatty acid vesicles creating membrane enclosed complex structures of variable morphologies. This is possible because fatty acid vesicle membranes act as filters allowing passage of activated amino acids while some amino acids derived from the activated species become non-permeable and trapped in the vesicles. Similarly, nascent peptides derived from the condensation of the activated amino acids are also trapped in the vesicles. It is hypothesized that such preselected peptide amyloids become a sequence pool for the emergence of proteins in life and that after billions of years of cellular evolution, the sequences in the current proteome have diverged significantly from these original seed peptides. If this hypothesis is correct, it could be possible to detect the traces of these seed sequences in current proteomes. Here, we show for all possible 3, 6, 7, 8 or 9 residue sequence motifs that those motifs that are most amyloidogenic/aggregation prone are over-represented in extant proteomes compared to a sequence-randomized proteome. Furthermore, we find that there is a greater proportion of amyloidogenic sequence motifs in archaea proteomes than in the larger primate proteomes. This suggests that the evolution towards larger proteomes leads to smaller proportion of amyloidogenic sequences.


Assuntos
Amiloide , Peptídeos , Proteoma , Animais , Aminoácidos/química , Amiloide/química , Ácidos Graxos , Peptídeos/química , Evolução Molecular
3.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 479-497, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259836

RESUMO

Vibrio spp. play a crucial role in the global recycling of the highly abundant recalcitrant biopolymer chitin in marine ecosystems through their ability to secrete chitin-degrading enzymes to efficiently hydrolyse chitinous materials and use them as their major carbon source. In this study, the first crystal structures of a complete four-domain chitin-active AA10 lytic polysaccharide monooxygenase from the chitinolytic bacterium Vibrio campbellii type strain ATCC BAA-1116 are reported. The crystal structures of apo and copper-bound VhLPMO10A were resolved as homodimers with four distinct domains: an N-terminal AA10 catalytic (CatD) domain connected to a GlcNAc-binding (GbpA_2) domain, followed by a module X domain and a C-terminal carbohydrate-binding module (CBM73). Size-exclusion chromatography and small-angle X-ray scattering analysis confirmed that VhLPMO10A exists as a monomer in solution. The active site of VhLPMO10A is located on the surface of the CatD domain, with three conserved residues (His1, His98 and Phe170) forming the copper(II)-binding site. Metal-binding studies using synchrotron X-ray absorption spectroscopy and X-ray fluorescence, together with electron paramagnetic resonance spectroscopy, gave consistently strong copper(II) signals in the protein samples, confirming that VhLPMO10A is a copper-dependent enzyme. ITC binding data showed that VhLPMO10A could bind various divalent cations but bound most strongly to copper(II) ions, with a Kd of 0.1 ± 0.01 µM. In contrast, a Kd of 1.9 nM was estimated for copper(I) ions from redox-potential measurements. The presence of ascorbic acid is essential for H2O2 production in the reaction catalysed by VhLPMO10A. MALDI-TOF MS identified VhLPMO10A as a C1-specific LPMO, generating oxidized chitooligosaccharide products with different degrees of polymerization (DP2ox-DP8ox). This new member of the chitin-active AA10 LPMOs could serve as a powerful biocatalyst in biofuel production from chitin biomass.


Assuntos
Quitina , Vibrio , Quitina/metabolismo , Oxigenases de Função Mista/química , Cobre/metabolismo , Ecossistema , Peróxido de Hidrogênio , Proteínas de Bactérias/química , Polissacarídeos/metabolismo
4.
Bioessays ; 45(2): e2200119, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461738

RESUMO

The release of AlphaFold2 (AF2), a deep-learning-aided, open-source protein structure prediction program, from DeepMind, opened a new era of molecular biology. The astonishing improvement in the accuracy of the structure predictions provides the opportunity to characterize protein systems from uncultured Asgard archaea, key organisms in evolutionary biology. Despite the accumulation in metagenomics-derived Asgard archaea eukaryotic-like protein sequences, limited structural and biochemical information have restricted the insight in their potential functions. In this review, we focus on profilin, an actin-dynamics regulating protein, which in eukaryotes, modulates actin polymerization through (1) direct actin interaction, (2) polyproline binding, and (3) phospholipid binding. We assess AF2-predicted profilin structures in their potential abilities to participate in these activities. We demonstrate that AF2 is a powerful new tool for understanding the emergence of biological functional traits in evolution.


Assuntos
Archaea , Profilinas , Archaea/metabolismo , Profilinas/genética , Profilinas/metabolismo , Actinas , Filogenia , Furilfuramida/metabolismo , Eucariotos/metabolismo
5.
Commun Biol ; 5(1): 890, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045281

RESUMO

Charting the emergence of eukaryotic traits is important for understanding the characteristics of organisms that contributed to eukaryogenesis. Asgard archaea and eukaryotes are the only organisms known to possess regulated actin cytoskeletons. Here, we determined that gelsolins (2DGels) from Lokiarchaeota (Loki) and Heimdallarchaeota (Heim) are capable of regulating eukaryotic actin dynamics in vitro and when expressed in eukaryotic cells. The actin filament severing and capping, and actin monomer sequestering, functionalities of 2DGels are strictly calcium controlled. We determined the X-ray structures of Heim and Loki 2DGels bound actin monomers. Each structure possesses common and distinct calcium-binding sites. Loki2DGel has an unusual WH2-like motif (LVDV) between its two gelsolin domains, in which the aspartic acid coordinates a calcium ion at the interface with actin. We conclude that the calcium-regulated actin cytoskeleton predates eukaryogenesis and emerged in the predecessors of the last common ancestor of Loki, Heim and Thorarchaeota.


Assuntos
Actinas , Cálcio , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Archaea/metabolismo , Cálcio/metabolismo , Gelsolina/química , Gelsolina/metabolismo
6.
Sci Adv ; 8(12): eabm2225, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333570

RESUMO

Tubulins are critical for the internal organization of eukaryotic cells, and understanding their emergence is an important question in eukaryogenesis. Asgard archaea are the closest known prokaryotic relatives to eukaryotes. Here, we elucidated the apo and nucleotide-bound x-ray structures of an Asgard tubulin from hydrothermal living Odinarchaeota (OdinTubulin). The guanosine 5'-triphosphate (GTP)-bound structure resembles a microtubule protofilament, with GTP bound between subunits, coordinating the "+" end subunit through a network of water molecules and unexpectedly by two cations. A water molecule is located suitable for GTP hydrolysis. Time course crystallography and electron microscopy revealed conformational changes on GTP hydrolysis. OdinTubulin forms tubules at high temperatures, with short curved protofilaments coiling around the tubule circumference, more similar to FtsZ, rather than running parallel to its length, as in microtubules. Thus, OdinTubulin represents an evolutionary stage intermediate between prokaryotic FtsZ and eukaryotic microtubule-forming tubulins.


Assuntos
Células Eucarióticas , Tubulina (Proteína) , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Guanosina Trifosfato/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/química
7.
EMBO J ; 41(5): e107982, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35178724

RESUMO

A paradox of eukaryotic cells is that while some species assemble a complex actin cytoskeleton from a single ortholog, other species utilize a greater diversity of actin isoforms. The physiological consequences of using different actin isoforms, and the molecular mechanisms by which highly conserved actin isoforms are segregated into distinct networks, are poorly known. Here, we sought to understand how a simple biological system, composed of a unique actin and a limited set of actin-binding proteins, reacts to a switch to heterologous actin expression. Using yeast as a model system and biomimetic assays, we show that such perturbation causes drastic reorganization of the actin cytoskeleton. Our results indicate that defective interaction of a heterologous actin for important regulators of actin assembly limits certain actin assembly pathways while reinforcing others. Expression of two heterologous actin variants, each specialized in assembling a different network, rescues cytoskeletal organization and confers resistance to external perturbation. Hence, while species using a unique actin have homeostatic actin networks, actin assembly pathways in species using several actin isoforms may act more independently.


Assuntos
Actinas/metabolismo , Isoformas de Proteínas/metabolismo , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Proteínas dos Microfilamentos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
8.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1479-1485, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866605

RESUMO

Imaging of actin filaments is crucial due to the integral role that they play in many cellular functions such as intracellular transport, membrane remodelling and cell motility. Visualizing actin filaments has so far relied on fluorescence microscopy and electron microscopy/tomography. The former lacks the capacity to capture the overall local ultrastructure, while the latter requires rigorous sample preparation that can lead to potential artefacts, and only delivers relatively small volumes of imaging data at the thinnest areas of a cell. In this work, a correlative approach utilizing in situ super-resolution fluorescence imaging and cryo X-ray tomography was used to image bundles of actin filaments deep inside cells under near-native conditions. In this case, fluorescence 3D imaging localized the actin bundles within the intracellular space, while X-ray tomograms of the same areas provided detailed views of the local ultrastructure. Using this new approach, actin trails connecting vesicles in the perinuclear area and hotspots of actin presence within and around multivesicular bodies were observed. The characteristic prevalence of filamentous actin in cytoplasmic extensions was also documented.


Assuntos
Actinas/química , Microscopia Crioeletrônica/métodos , Lasers , Animais , Linhagem Celular Tumoral , Humanos , Conformação Proteica , Raios X
9.
J Biol Chem ; 297(3): 101071, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34400168

RESUMO

VhCBP is a periplasmic chitooligosaccharide-binding protein mainly responsible for translocation of the chitooligosaccharide (GlcNAc)2 across the double membranes of marine bacteria. However, structural and thermodynamic understanding of the sugar-binding/-release processes of VhCBP is relatively less. VhCBP displayed the greatest affinity toward (GlcNAc)2, with lower affinity for longer-chain chitooligosaccharides [(GlcNAc)3-4]. (GlcNAc)4 partially occupied the closed sugar-binding groove, with two reducing-end GlcNAc units extending beyond the sugar-binding groove and barely characterized by weak electron density. Mutation of three conserved residues (Trp363, Asp365, and Trp513) to Ala resulted in drastic decreases in the binding affinity toward the preferred substrate (GlcNAc)2, indicating their significant contributions to sugar binding. The structure of the W513A-(GlcNAc)2 complex in a 'half-open' conformation unveiled the intermediary step of the (GlcNAc)2 translocation from the soluble CBP in the periplasm to the inner membrane-transporting components. Isothermal calorimetry data suggested that VhCBP adopts the high-affinity conformation to bind (GlcNAc)2, while its low-affinity conformation facilitated sugar release. Thus, chitooligosaccharide translocation, conferred by periplasmic VhCBP, is a crucial step in the chitin catabolic pathway, allowing Vibrio bacteria to thrive in oceans where chitin is their major source of nutrients.


Assuntos
Quitina/metabolismo , Dissacarídeos/metabolismo , Vibrio/metabolismo , Carboidratos , Quitinases/metabolismo , Quitosana/metabolismo , Cristalografia por Raios X/métodos , Dissacarídeos/fisiologia , Modelos Estruturais , Oligossacarídeos/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Relação Estrutura-Atividade
10.
Biomacromolecules ; 22(10): 4095-4109, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34384019

RESUMO

Bacterial microcompartments are proteinaceous shells that encase specialized metabolic processes in bacteria. Recent advances in simplification of these intricate shells have encouraged bioengineering efforts. Here, we construct minimal shells derived from the Halothiobacillus neapolitanus α-carboxysome, which we term Cso-shell. Using cryogenic electron microscopy, the atomic-level structures of two shell forms were obtained, reinforcing notions of evolutionarily conserved features in bacterial microcompartment shell architecture. Encapsulation peptide sequences that facilitate loading of heterologous protein cargo within the shells were identified. We further provide a first demonstration in utilizing minimal bacterial microcompartment-derived shells for hosting heterologous enzymes. Cso-shells were found to stabilize enzymatic activities against heat shock, presence of methanol co-solvent, consecutive freeze-thawing, and alkaline environments. This study yields insights into α-carboxysome assembly and advances the utility of synthetic bacterial microcompartments as nanoreactors capable of stabilizing enzymes with varied properties and reaction chemistries.


Assuntos
Proteínas de Bactérias , Organelas , Bactérias , Proteínas de Bactérias/genética
11.
Front Endocrinol (Lausanne) ; 12: 653557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959097

RESUMO

Insulin and muscle contractions mediate glucose transporter 4 (GLUT4) translocation and insertion into the plasma membrane (PM) for glucose uptake in skeletal muscles. Muscle contraction results in AMPK activation, which promotes GLUT4 translocation and PM insertion. However, little is known regarding AMPK effectors that directly regulate GLUT4 translocation. We aim to identify novel AMPK effectors in the regulation of GLUT4 translocation. We performed biochemical, molecular biology and fluorescent microscopy imaging experiments using gain- and loss-of-function mutants of tropomodulin 3 (Tmod3). Here we report Tmod3, an actin filament capping protein, as a novel AMPK substrate and an essential mediator of AMPK-dependent GLUT4 translocation and glucose uptake in myoblasts. Furthermore, Tmod3 plays a key role in AMPK-induced F-actin remodeling and GLUT4 insertion into the PM. Our study defines Tmod3 as a key AMPK effector in the regulation of GLUT4 insertion into the PM and glucose uptake in muscle cells, and offers new mechanistic insights into the regulation of glucose homeostasis.


Assuntos
Membrana Celular/metabolismo , Transportador de Glucose Tipo 4/sangue , Mioblastos/metabolismo , Tropomodulina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Transporte Biológico , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Insulina/metabolismo , Lentivirus/metabolismo , Espectrometria de Massas , Camundongos , Músculo Esquelético/metabolismo , Fosforilação , Transporte Proteico , Transdução de Sinais
12.
Sci Rep ; 11(1): 10127, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980885

RESUMO

Grafting bioactive peptides into recipient protein scaffolds can often increase their activities by conferring enhanced stability and cellular longevity. Here, we describe use of vGFP as a novel scaffold to display peptides. vGFP comprises GFP fused to a bound high affinity Enhancer nanobody that potentiates its fluorescence. We show that peptides inserted into the linker region between GFP and the Enhancer are correctly displayed for on-target interaction, both in vitro and in live cells by pull-down, measurement of target inhibition and imaging analyses. This is further confirmed by structural studies highlighting the optimal display of a vGFP-displayed peptide bound to Mdm2, the key negative regulator of p53 that is often overexpressed in cancer. We also demonstrate a potential biosensing application of the vGFP scaffold by showing target-dependent modulation of intrinsic fluorescence. vGFP is relatively thermostable, well-expressed and inherently fluorescent. These properties make it a useful scaffold to add to the existing tool box for displaying peptides that can disrupt clinically relevant protein-protein interactions.


Assuntos
Técnicas de Visualização da Superfície Celular , Proteínas de Fluorescência Verde/metabolismo , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Técnicas Biossensoriais , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Relação Estrutura-Atividade
13.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571120

RESUMO

Uncapping of actin filaments is essential for driving polymerization and depolymerization dynamics from capping protein-associated filaments; however, the mechanisms of uncapping leading to rapid disassembly are unknown. Here, we elucidated the x-ray crystal structure of the actin/twinfilin/capping protein complex to address the mechanisms of twinfilin uncapping of actin filaments. The twinfilin/capping protein complex binds to two G-actin subunits in an orientation that resembles the actin filament barbed end. This suggests an unanticipated mechanism by which twinfilin disrupts the stable capping of actin filaments by inducing a G-actin conformation in the two terminal actin subunits. Furthermore, twinfilin disorders critical actin-capping protein interactions, which will assist in the dissociation of capping protein, and may promote filament uncapping through a second mechanism involving V-1 competition for an actin-binding surface on capping protein. The extensive interactions with capping protein indicate that the evolutionary conserved role of twinfilin is to uncap actin filaments.

14.
Curr Opin Cell Biol ; 68: 55-63, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33049465

RESUMO

The origin of the eukaryotic cell is one of the greatest mysteries in modern biology. Eukaryotic-wide specific biological processes arose in the lost ancestors of eukaryotes. These distinctive features, such as the actin cytoskeleton, define what it is to be a eukaryote. Recent sequencing, characterization, and isolation of Asgard archaea have opened an intriguing window into the pre-eukaryotic cell. Firstly, sequencing of anaerobic sediments identified a group of uncultured organisms, Asgard archaea, which contain genes with homology to eukaryotic signature genes. Secondly, characterization of the products of these genes at the protein level demonstrated that Asgard archaea have related biological processes to eukaryotes. Finally, the isolation of an Asgard archaeon has produced a model organism in which the morphological consequences of the eukaryotic-like processes can be studied. Here, we consider the consequences for the Asgard actin cytoskeleton and for the evolution of a regulated actin system in the archaea-to-eukaryotic transition.


Assuntos
Citoesqueleto de Actina/genética , Archaea/citologia , Proteínas Arqueais/genética , Evolução Biológica , Células Eucarióticas/citologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Actinas/química , Actinas/genética , Animais , Archaea/química , Archaea/genética , Archaea/isolamento & purificação , Proteínas Arqueais/química , Proteínas Arqueais/fisiologia , Eucariotos/citologia , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/química , Células Eucarióticas/fisiologia , Humanos , Metagenômica , Filogenia , Análise de Sequência de Proteína
15.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 536-543, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135672

RESUMO

Serratia marcescens is an opportunistic pathogen that commonly causes hospital-acquired infections and can utilize chitin-enriched nutrients as an alternative energy source. This study reports the identification of a chitoporin (ChiP), termed SmChiP, from the outer membrane of S. marcescens. Sequence alignment with genetically characterized ChiPs suggests that SmChiP is more closely related to the monomeric EcChiP from Escherichia coli than to the trimeric VhChiP from Vibrio campbellii. A single crystal of SmChiP grown under the condition 22%(w/v) PEG 8000, 0.1 M calcium acetate, 0.1 M MES pH 6.0 diffracted X-ray synchrotron radiation to 1.85 Šresolution. SmChiP co-crystallized with chitohexaose under the condition 19%(w/v) PEG 1500, 2 M ammonium phosphate monobasic, 0.1 M HEPES pH 7.0 diffracted X-rays to 2.70 Šresolution. Preliminary crystallographic analysis shows that both SmChiP crystal forms contain one molecule per asymmetric unit and that they belong to the tetragonal space groups P42212 and P41212, respectively. The SmChiP crystal has unit-cell parameters a = 82.97, b = 82.97, c = 189.53 Å, α = ß = γ = 90°, while the crystal of SmChiP in complex with chitohexaose has unit-cell parameters a = 73.24, b = 73.24, c = 213.46 Å, α = ß = γ = 90°. Initial assessment of the complex structure clearly revealed electron density for the sugar ligand. Structure determination of SmChiP in the absence and presence of chitohexaose should reveal the molecular basis of chitin utilization by S. marcescens.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Porinas/química , Serratia marcescens/química , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Cristalização , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Humanos , Oligossacarídeos/química , Porinas/genética , Porinas/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Serratia marcescens/genética , Espectrometria de Massas por Ionização por Electrospray
16.
Sci Rep ; 10(1): 18185, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082458

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Proc Natl Acad Sci U S A ; 117(33): 19904-19913, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747565

RESUMO

Asgard archaea genomes contain potential eukaryotic-like genes that provide intriguing insight for the evolution of eukaryotes. The eukaryotic actin polymerization/depolymerization cycle is critical for providing force and structure in many processes, including membrane remodeling. In general, Asgard genomes encode two classes of actin-regulating proteins from sequence analysis, profilins and gelsolins. Asgard profilins were demonstrated to regulate actin filament nucleation. Here, we identify actin filament severing, capping, annealing and bundling, and monomer sequestration activities by gelsolin proteins from Thorarchaeota (Thor), which complete a eukaryotic-like actin depolymerization cycle, and indicate complex actin cytoskeleton regulation in Asgard organisms. Thor gelsolins have homologs in other Asgard archaea and comprise one or two copies of the prototypical gelsolin domain. This appears to be a record of an initial preeukaryotic gene duplication event, since eukaryotic gelsolins are generally comprise three to six domains. X-ray structures of these proteins in complex with mammalian actin revealed similar interactions to the first domain of human gelsolin or cofilin with actin. Asgard two-domain, but not one-domain, gelsolins contain calcium-binding sites, which is manifested in calcium-controlled activities. Expression of two-domain gelsolins in mammalian cells enhanced actin filament disassembly on ionomycin-triggered calcium release. This functional demonstration, at the cellular level, provides evidence for a calcium-controlled Asgard actin cytoskeleton, indicating that the calcium-regulated actin cytoskeleton predates eukaryotes. In eukaryotes, dynamic bundled actin filaments are responsible for shaping filopodia and microvilli. By correlation, we hypothesize that the formation of the protrusions observed from Lokiarchaeota cell bodies may involve the gelsolin-regulated actin structures.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Gelsolina/metabolismo , Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/genética , Actinas/química , Actinas/genética , Sequência de Aminoácidos , Archaea/química , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Citoesqueleto/química , Citoesqueleto/genética , Citoesqueleto/metabolismo , Evolução Molecular , Gelsolina/química , Gelsolina/genética , Genoma Arqueal , Polimerização , Conformação Proteica em alfa-Hélice , Alinhamento de Sequência
18.
Sci Rep ; 10(1): 12002, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686735

RESUMO

Here, we measured the concentrations of several ions in cultivated Gram-negative and Gram-positive bacteria, and analyzed their effects on polymer formation by the actin homologue MreB. We measured potassium, sodium, chloride, calcium and magnesium ion concentrations in Leptospira interrogans, Bacillus subtilis and Escherichia coli. Intracellular ionic strength contributed from these ions varied within the 130-273 mM range. The intracellular sodium ion concentration range was between 122 and 296 mM and the potassium ion concentration range was 5 and 38 mM. However, the levels were significantly influenced by extracellular ion levels. L. interrogans, Rickettsia rickettsii and E. coli MreBs were heterologously expressed and purified from E. coli using a novel filtration method to prepare MreB polymers. The structures and stability of Alexa-488 labeled MreB polymers, under varying ionic strength conditions, were investigated by confocal microscopy and MreB polymerization rates were assessed by measuring light scattering. MreB polymerization was fastest in the presence of monovalent cations in the 200-300 mM range. MreB filaments showed high stability in this concentration range and formed large assemblies of tape-like bundles that transformed to extensive sheets at higher ionic strengths. Changing the calcium concentration from 0.2 to 0 mM and then to 2 mM initialized rapid remodelling of MreB polymers.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Espaço Intracelular/metabolismo , Bacillus subtilis/metabolismo , Cálcio/metabolismo , Cátions , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Leptospira interrogans/metabolismo , Modelos Biológicos , Polimerização , Sais/farmacologia
19.
Structure ; 28(6): 635-642.e3, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32320671

RESUMO

In this work, we present a generalizable directed computational evolution protocol to effectively reduce the sequence space to be explored in rational enzyme design. The protocol involves in silico mutation modeling and substrate docking to rapidly identify mutagenesis hotspots that may enhance an enzyme's substrate binding and overall catalysis. By applying this protocol to a quorum-quenching Geobacillus kaustophilus lactonase, GKL, we generated 1,881 single mutants and docked high-energy intermediates of nine acyl homoserine lactones onto them. We found that Phe28 and Tyr99 were two hotspots that produced most of the predicted top 20 mutants. Of the 180 enzyme-substrate combinations (top 20 mutants × 9 substrates), 51 (28%) exhibited enhanced substrate binding and 22 (12%) had better overall activity when compared with wild-type GKL. X-ray crystallographic studies of Y99C and Y99P provided rationalized explanations for the enhancement in enzyme function and corroborated the utility of the protocol.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Geobacillus/fisiologia , Mutação , Amidoidrolases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Simulação por Computador , Cristalografia por Raios X , Geobacillus/enzimologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Percepção de Quorum , Especificidade por Substrato
20.
J Biol Chem ; 295(14): 4464-4476, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014995

RESUMO

Crystallization of recombinant proteins has been fundamental to our understanding of protein function, dysfunction, and molecular recognition. However, this information has often been gleaned under extremely nonphysiological protein, salt, and H+ concentrations. Here, we describe the development of a robust Inka1-Box (iBox)-PAK4cat system that spontaneously crystallizes in several mammalian cell types. The semi-quantitative assay described here allows the measurement of in vivo protein-protein interactions using a novel GFP-linked reporter system that produces fluorescent readouts from protein crystals. We combined this assay with in vitro X-ray crystallography and molecular dynamics studies to characterize the molecular determinants of the interaction between the PDZ2 domain of Na+/H+ exchange regulatory cofactor NHE-RF1 (NHERF1) and cystic fibrosis transmembrane conductance regulator (CFTR), a protein complex pertinent to the genetic disease cystic fibrosis. These experiments revealed the crystal structure of the extended PDZ domain of NHERF1 and indicated, contrary to what has been previously reported, that residue selection at positions -1 and -3 of the PDZ-binding motif influences the affinity and specificity of the NHERF1 PDZ2-CFTR interaction. Our results suggest that this system could be utilized to screen additional protein-protein interactions, provided they can be accommodated within the spacious iBox-PAK4cat lattice.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos , Simulação de Dinâmica Molecular , Domínios PDZ , Fosfoproteínas/química , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Trocadores de Sódio-Hidrogênio/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...