Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Clin Cancer Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837903

RESUMO

PURPOSE: Non-smokers account for 10-13% of all lung cancer cases in the United States. Etiology is attributed to multiple risk factors including exposure to secondhand smoking, asbestos, environmental pollution, and radon, but these exposures are not within the current eligibility criteria for early lung cancer screening by low-dose computed tomography (LDCT). EXPERIMENTAL DESIGN: Urine samples were collected from two independent cohorts comprising 846 participants (exploratory cohort) and 505 participants (validation cohort). The cancer urinary biomarkers, creatine riboside (CR) and N-acetylneuraminic acid (NANA) were analyzed and quantified using liquid chromatography-mass spectrometry to determine if non-smoker cases can be distinguished from sex and age-matched controls in comparison to tobacco smoker cases and controls, potentially leading to more precise eligibility criteria for LDCT screening. RESULTS: Urinary levels of CR and NANA were significantly higher and comparable in non-smokers and tobacco smoker cases as compared to population controls in both cohorts. Receiver Operating Characteristics (ROC) analysis for combined CR and NANA levels in non-smokers of the exploratory cohort resulted in better predictive performance with the area under the curve (AUC) of 0.94, whereas the validation cohort non-smokers had an AUC of 0.80. Kaplan-Meier survival curves showed that high levels of CR and NANA were associated with increased cancer-specific death in non-smokers as well as tobacco smoker cases in both cohorts. CONCLUSIONS: Measuring CR and NANA in urine liquid biopsies could identify non-smokers at high risk for lung cancer as candidates for LDCT screening and warrant prospective studies of these biomarkers.

2.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703764

RESUMO

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Proteogenômica/métodos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Transcriptoma/genética , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
3.
Oncogenesis ; 13(1): 13, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570533

RESUMO

Change within the intratumoral microbiome is a common feature in lung and other cancers and may influence inflammation and immunity in the tumor microenvironment, affecting growth and metastases. We previously characterized the lung cancer microbiome in patients and identified Acidovorax temperans as enriched in tumors. Here, we instilled A. temperans in an animal model driven by mutant K-ras and Tp53. This revealed A. temperans accelerates tumor development and burden through infiltration of proinflammatory cells. Neutrophils exposed to A. temperans displayed a mature, pro-tumorigenic phenotype with increased cytokine signaling, with a global shift away from IL-1ß signaling. Neutrophil to monocyte and macrophage signaling upregulated MHC II to activate CD4+ T cells, polarizing them to an IL-17A+ phenotype detectable in CD4+ and γδ populations (T17). These T17 cells shared a common gene expression program predictive of poor survival in human LUAD. These data indicate bacterial exposure promotes tumor growth by modulating inflammation.

5.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
6.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181741

RESUMO

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Assuntos
Neoplasias Pulmonares , Proteogenômica , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/química , Carcinoma de Pequenas Células do Pulmão/genética , Xenoenxertos , Biomarcadores Tumorais/análise
7.
Clin Proteomics ; 21(1): 7, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291365

RESUMO

BACKGROUND: Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. METHODS: We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. RESULTS: Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. CONCLUSIONS: Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data.

8.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582357

RESUMO

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Oncogenes , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNA
9.
Cancer Cell ; 41(9): 1567-1585.e7, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37582362

RESUMO

DNA methylation plays a critical role in establishing and maintaining cellular identity. However, it is frequently dysregulated during tumor development and is closely intertwined with other genetic alterations. Here, we leveraged multi-omic profiling of 687 tumors and matched non-involved adjacent tissues from the kidney, brain, pancreas, lung, head and neck, and endometrium to identify aberrant methylation associated with RNA and protein abundance changes and build a Pan-Cancer catalog. We uncovered lineage-specific epigenetic drivers including hypomethylated FGFR2 in endometrial cancer. We showed that hypermethylated STAT5A is associated with pervasive regulon downregulation and immune cell depletion, suggesting that epigenetic regulation of STAT5A expression constitutes a molecular switch for immunosuppression in squamous tumors. We further demonstrated that methylation subtype-enrichment information can explain cell-of-origin, intra-tumor heterogeneity, and tumor phenotypes. Overall, we identified cis-acting DNA methylation events that drive transcriptional and translational changes, shedding light on the tumor's epigenetic landscape and the role of its cell-of-origin.


Assuntos
Metilação de DNA , Neoplasias do Endométrio , Feminino , Humanos , Epigênese Genética , Multiômica , Regulação Neoplásica da Expressão Gênica , Neoplasias do Endométrio/genética
10.
Cell ; 186(18): 3945-3967.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582358

RESUMO

Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Acetilação , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteômica/métodos
11.
Cell Rep Med ; 4(9): 101173, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37582371

RESUMO

We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.


Assuntos
Aprendizado Profundo , Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Proteômica , Aprendizado de Máquina
12.
Clin Proteomics ; 19(1): 36, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266629

RESUMO

BACKGROUND: The identification of differentially expressed tumor-associated proteins and genomic alterations driving neoplasia is critical in the development of clinical assays to detect cancers and forms the foundation for understanding cancer biology. One of the challenges in the analysis of pancreatic ductal adenocarcinoma (PDAC) is the low neoplastic cellularity and heterogeneous composition of bulk tumors. To enrich neoplastic cells from bulk tumor tissue, coring, and laser microdissection (LMD) sampling techniques have been employed. In this study, we assessed the protein and KRAS mutation changes associated with samples obtained by these enrichment techniques and evaluated the fraction of neoplastic cells in PDAC for proteomic and genomic analyses. METHODS: Three fresh frozen PDAC tumors and their tumor-matched normal adjacent tissues (NATs) were obtained from three sampling techniques using bulk, coring, and LMD; and analyzed by TMT-based quantitative proteomics. The protein profiles and characterizations of differentially expressed proteins in three sampling groups were determined. These three PDACs and samples of five additional PDACs obtained by the same three sampling techniques were also subjected to genomic analysis to characterize KRAS mutations. RESULTS: The neoplastic cellularity of eight PDACs ranged from less than 10% to over 80% based on morphological review. Distinctive proteomic patterns and abundances of certain tumor-associated proteins were revealed when comparing the tumors and NATs by different sampling techniques. Coring and bulk tissues had comparable proteome profiles, while LMD samples had the most distinct proteome composition compared to bulk tissues. Further genomic analysis of bulk, cored, or LMD samples demonstrated that KRAS mutations were significantly enriched in LMD samples while coring was less effective in enriching for KRAS mutations when bulk tissues contained a relatively low neoplastic cellularity. CONCLUSIONS: In addition to bulk tissues, samples from LMD and coring techniques can be used for proteogenomic studies. The greatest enrichment of neoplastic cellularity is obtained with the LMD technique.

13.
Cancer Discov ; 12(11): 2586-2605, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36001024

RESUMO

Microscaled proteogenomics was deployed to probe the molecular basis for differential response to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed that sensitivity was marked by elevation of DNA repair, E2F targets, G2-M checkpoint, interferon-gamma signaling, and immune-checkpoint components. Proteogenomic analyses of somatic copy-number aberrations identified a resistance-associated 19q13.31-33 deletion where LIG1, POLD1, and XRCC1 are located. In orthogonal datasets, LIG1 (DNA ligase I) gene deletion and/or low mRNA expression levels were associated with lack of pathologic complete response, higher chromosomal instability index (CIN), and poor prognosis in TNBC, as well as carboplatin-selective resistance in TNBC preclinical models. Hemizygous loss of LIG1 was also associated with higher CIN and poor prognosis in other cancer types, demonstrating broader clinical implications. SIGNIFICANCE: Proteogenomic analysis of triple-negative breast tumors revealed a complex landscape of chemotherapy response associations, including a 19q13.31-33 somatic deletion encoding genes serving lagging-strand DNA synthesis (LIG1, POLD1, and XRCC1), that correlate with lack of pathologic response, carboplatin-selective resistance, and, in pan-cancer studies, poor prognosis and CIN. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Proteogenômica , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carboplatina , Proteômica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Neoadjuvante , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
14.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34534465

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenômica , Adenocarcinoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudos de Coortes , Células Endoteliais/metabolismo , Epigênese Genética , Feminino , Dosagem de Genes , Genoma Humano , Glicólise , Glicoproteínas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neoplasias Pancreáticas/diagnóstico , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Especificidade por Substrato , Transcriptoma/genética
15.
BMC Cancer ; 21(1): 310, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761896

RESUMO

BACKGROUND: Chromosomal inversions involving anaplastic lymphoma kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4) generate a fusion protein EML4-ALK in non-small cell lung cancer (NSCLC). The understanding of EML4-ALK function can be improved by a functional study using normal human cells. METHODS: Here we for the first time conduct such study to examine the effects of EML4-ALK on cell proliferation, cellular senescence, DNA damage, gene expression profiles and transformed phenotypes. RESULTS: The lentiviral expression of EML4-ALK in mortal, normal human fibroblasts caused, through its constitutive ALK kinase activity, an early induction of cellular senescence with accumulated DNA damage, upregulation of p16INK4A and p21WAF1, and senescence-associated ß-galactosidase (SA-ß-gal) activity. In contrast, when EML4-ALK was expressed in normal human fibroblasts transduced with telomerase reverse transcriptase (hTERT), which is activated in the vast majority of NSCLC, the cells showed accelerated proliferation and acquired anchorage-independent growth ability in soft-agar medium, without accumulated DNA damage, chromosome aberration, nor p53 mutation. EML4-ALK induced the phosphorylation of STAT3 in both mortal and hTERT-transduced cells, but RNA sequencing analysis suggested that the different signaling pathways contributed to the different phenotypic outcomes in these cells. While EML4-ALK also induced anchorage-independent growth in hTERT-immortalized human bronchial epithelial cells in vitro, the expression of EML4-ALK alone did not cause detectable in vivo tumorigenicity in immunodeficient mice. CONCLUSIONS: Our data indicate that the expression of hTERT is critical for EML4-ALK to manifest its in vitro transforming activity in human cells. This study provides the isogenic pairs of human cells with and without EML4-ALK expression.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/metabolismo , Telomerase/metabolismo , Animais , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Proliferação de Células/genética , Senescência Celular/genética , Dano ao DNA , Modelos Animais de Doenças , Células Epiteliais , Feminino , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas de Fusão Oncogênica/genética , RNA-Seq , Telomerase/genética , Homeostase do Telômero/genética , Transfecção
16.
Cancer Cell ; 39(3): 361-379.e16, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33417831

RESUMO

We present a proteogenomic study of 108 human papilloma virus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs). Proteomic analysis systematically catalogs HNSCC-associated proteins and phosphosites, prioritizes copy number drivers, and highlights an oncogenic role for RNA processing genes. Proteomic investigation of mutual exclusivity between FAT1 truncating mutations and 11q13.3 amplifications reveals dysregulated actin dynamics as a common functional consequence. Phosphoproteomics characterizes two modes of EGFR activation, suggesting a new strategy to stratify HNSCCs based on EGFR ligand abundance for effective treatment with inhibitory EGFR monoclonal antibodies. Widespread deletion of immune modulatory genes accounts for low immune infiltration in immune-cold tumors, whereas concordant upregulation of multiple immune checkpoint proteins may underlie resistance to anti-programmed cell death protein 1 monotherapy in immune-hot tumors. Multi-omic analysis identifies three molecular subtypes with high potential for treatment with CDK inhibitors, anti-EGFR antibody therapy, and immunotherapy, respectively. Altogether, proteogenomics provides a systematic framework to inform HNSCC biology and treatment.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Infecções por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Receptores ErbB/genética , Feminino , Humanos , Imunoterapia/métodos , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/virologia , Proteogenômica/métodos , Proteômica/métodos , Adulto Jovem
17.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33212010

RESUMO

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Terapia de Alvo Molecular , Proteogenômica , Desaminases APOBEC/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Estudos de Coortes , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Imunoterapia , Metabolômica , Pessoa de Meia-Idade , Mutagênese/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Receptor ErbB-2/metabolismo , Proteína do Retinoblastoma/metabolismo , Microambiente Tumoral/imunologia
18.
Elife ; 92020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33112233

RESUMO

Long noncoding RNAs (lncRNAs) are often associated with polysomes, indicating coding potential. However, only a handful of endogenous proteins encoded by putative lncRNAs have been identified and assigned a function. Here, we report the discovery of a putative gastrointestinal-tract-specific lncRNA (LINC00675) that is regulated by the pioneer transcription factor FOXA1 and encodes a conserved small protein of 79 amino acids which we termed FORCP (FOXA1-Regulated Conserved Small Protein). FORCP transcript is undetectable in most cell types but is abundant in well-differentiated colorectal cancer (CRC) cells where it functions to inhibit proliferation, clonogenicity, and tumorigenesis. The epitope-tagged and endogenous FORCP protein predominantly localizes to the endoplasmic reticulum (ER). In response to ER stress, FORCP depletion results in decreased apoptosis. Our findings on the initial characterization of FORCP demonstrate that FORCP is a novel, conserved small protein encoded by a mis-annotated lncRNA that regulates apoptosis and tumorigenicity in well-differentiated CRC cells.


Assuntos
Apoptose/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Trato Gastrointestinal/metabolismo , Genes Reporter , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Anotação de Sequência Molecular , Especificidade de Órgãos , RNA Longo não Codificante/genética
20.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649875

RESUMO

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Assuntos
Progressão da Doença , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteogenômica , Fumar/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinógenos/toxicidade , Estudos de Coortes , Citosina Desaminase/metabolismo , Ásia Oriental , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Metaloproteinases da Matriz/metabolismo , Mutação/genética , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...