Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 28(23): 235001, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27160256

RESUMO

Among the different strategies used to induce the opening of a band gap in graphene, one common practice is through chemical doping. While a gap may be opened in this way, disorder-induced scattering is an unwanted side-effect that impacts the electron mobility in the conductive regime of the system. However, this undesirable side effect is known to be minimised if dopants interact asymmetrically with the two sublattices of graphene. In this work we propose that mechanical strain can be used to introduce such a sublattice asymmetry in the doping process of graphene. We argue that a localised out-of-plane deformation applied to a graphene sheet can make one of the graphene sublattices more energetically favourable for impurity adsorption than the other and that this can be controlled by varying the strain parameters. Two complementary modelling schemes are used to describe the electronic structure of the flat and deformed graphene sheets: a tight-binding model and density functional theory. Our results indicate a novel way to select the doping process of graphene through strain engineering.

2.
Sci Rep ; 3: 1632, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23568379

RESUMO

Topology is familiar mostly from mathematics, but also natural sciences have found its concepts useful. Those concepts have been used to explain several natural phenomena in biology and physics, and they are particularly relevant for the electronic structure description of topological insulators and graphene systems. Here, we introduce topologically distinct graphene forms - graphene spirals - and employ density-functional theory to investigate their geometric and electronic properties. We found that the spiral topology gives rise to an intrinsic Rashba spin-orbit splitting. Through a Hamiltonian constrained by space curvature, graphene spirals have topologically protected states due to time-reversal symmetry. In addition, we argue that the synthesis of such graphene spirals is feasible and can be achieved through advanced bottom-up experimental routes that we indicate in this work.

3.
Adv Mater ; 23(39): 4471-90, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22103000

RESUMO

Graphene has a multitude of striking properties that make it an exceedingly attractive material for various applications, many of which will emerge over the next decade. However, one of the most promising applications lie in exploiting its peculiar electronic properties which are governed by its electrons obeying a linear dispersion relation. This leads to the observation of half integer quantum hall effect and the absence of localization. The latter is attractive for graphene-based field effect transistors. However, if graphene is to be the material for future electronics, then significant hurdles need to be surmounted, namely, it needs to be mass produced in an economically viable manner and be of high crystalline quality with no or virtually no defects or grains boundaries. Moreover, it will need to be processable with atomic precision. Hence, the future of graphene as a material for electronic based devices will depend heavily on our ability to piece graphene together as a single crystal and define its edges with atomic precision. In this progress report, the properties of graphene that make it so attractive as a material for electronics is introduced to the reader. The focus then centers on current synthesis strategies for graphene and their weaknesses in terms of electronics applications are highlighted.


Assuntos
Eletrônica , Grafite/química , Metais/química , Nanotecnologia , Nanotubos de Carbono/química , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...