Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Domest Anim Endocrinol ; 90: 106890, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39366130

RESUMO

This study evaluated the efficiency of in vitro culture of preantral follicles (PAF) in a commonly used medium for mesenchymal stem cell (MSC) culture. Parameters assessed included follicle survival, growth, stromal cell density, levels of reduced thiols and reactive oxygen species, epigenetic changes, cell apoptosis, and mRNA abundance. Caprine ovarian tissues were cultured for 1 or 7 days in either PAF or MSC-common media, with uncultured tissues serving as controls. The MSC medium exhibited increased follicular survival and growth and remodeled stromal density potentially through the regulation of oxidative stress and epigenetic changes compared to the PAF medium. In conclusion, our results highlight the importance of the MSC medium in enhancing follicular survival and growth, changing the stromal cell density, as well as in regulating the medium oxidative stress and epigenetic changes during the in vitro culture of caprine PAF.

2.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063237

RESUMO

Increasing exposure to unfavorable temperatures and water deficit imposes major constraints on most crops worldwide. Despite several studies regarding coffee responses to abiotic stresses, transcriptome modulation due to simultaneous stresses remains poorly understood. This study unravels transcriptomic responses under the combined action of drought and temperature in leaves from the two most traded species: Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu. Substantial transcriptomic changes were found, especially in response to the combination of stresses that cannot be explained by an additive effect. A large number of genes were involved in stress responses, with photosynthesis and other physiologically related genes usually being negatively affected. In both genotypes, genes encoding for protective proteins, such as dehydrins and heat shock proteins, were positively regulated. Transcription factors (TFs), including MADS-box genes, were down-regulated, although responses were genotype-dependent. In contrast to Icatu, only a few drought- and heat-responsive DEGs were recorded in CL153, which also reacted more significantly in terms of the number of DEGs and enriched GO terms, suggesting a high ability to cope with stresses. This research provides novel insights into the molecular mechanisms underlying leaf Coffea responses to drought and heat, revealing their influence on gene expression.


Assuntos
Coffea , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Transcriptoma , Coffea/genética , Coffea/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genótipo
3.
Sci Total Environ ; 947: 173619, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825208

RESUMO

The globalization in plant material trading has caused the emergence of invasive pests in many ecosystems, such as the alder pathogen Phytophthora ×alni in European riparian forests. Due to the ecological importance of alder to the functioning of rivers and the increasing incidence of P. ×alni-induced alder decline, effective and accessible decision tools are required to help managers and stakeholders control the disease. This study proposes a Bayesian belief network methodology to integrate diverse information on the factors affecting the survival and infection ability of P. ×alni in riparian habitats to help predict and manage disease incidence. The resulting Alder Decline Network (ADnet) management tool integrates information about alder decline from scientific literature, expert knowledge and empirical data. Expert knowledge was gathered through elicitation techniques that included 19 experts from 12 institutions and 8 countries. An original dataset was created covering 1189 European locations, from which P. ×alni occurrence was modeled based on bioclimatic variables. ADnet uncertainty was evaluated through its sensitivity to changes in states and three scenario analyses. The ADnet tool indicated that mild temperatures and high precipitation are key factors favoring pathogen survival. Flood timing, water velocity, and soil type have the strongest influence on disease incidence. ADnet can support ecosystem management decisions and knowledge transfer to address P. ×alni-induced alder decline at local or regional levels across Europe. Management actions such as avoiding the planting of potentially infected trees or removing man-made structures that increase the flooding period in disease-affected sites could decrease the incidence of alder disease in riparian forests and limit its spread. The coverage of the ADnet tool can be expanded by updating data on the pathogen's occurrence, particularly from its distributional limits. Research on the role of genetic variability in alder susceptibility and pathogen virulence may also help improve future ADnet versions.


Assuntos
Alnus , Teorema de Bayes , Doenças das Plantas/microbiologia , Doenças das Plantas/estatística & dados numéricos , Phytophthora , Ecossistema , Europa (Continente)/epidemiologia , Florestas , Conservação dos Recursos Naturais
4.
J Surg Case Rep ; 2023(10): rjad556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37846416

RESUMO

Perivascular epithelioid cell neoplasm (PEComa) is a rare type of tumor, and hepatic PEComa is even rarer. Its preoperative diagnosis is difficult, given the absence of specific clinical manifestations, often constituting an accidental finding, and the lack of a gold standard for identification using imaging studies. Instead, the diagnosis of hepatic PEComa is based on morphological and immunohistochemical features. We describe a case of an asymptomatic hepatic PEComa, angiomyolipoma type, which appeared in a middle-aged woman with chronic liver disease, during her follow-up and screening. Given the patient's context, human immunodeficiency virus-positive with chronic hepatitis C, and the similarities between the two tumors, the hepatic lesion was interpreted as hepatocellular carcinoma. The patient underwent surgical excision of the tumor, and the positive immunohistochemical staining for human melanoma black 45 and Melan A made the definitive diagnosis. In the absence of aggressiveness tumor markers, surveillance was decided. We also provide a literature review of these tumors.

5.
Mol Reprod Dev ; 90(12): 810-823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671983

RESUMO

This study assessed the histones methylation profile (H3K4me3 and H3K9me3) in late preantral (PA) and early antral (EA) caprine follicles grown in vivo and in vitro, and the anethole effect during in vitro culture of PA follicles. Uncultured in vivo-grown follicles (PA, n = 64; EA, n = 73) were used as controls to assess the methylation profile and genes' expression related to apoptosis cascade (BAX, proapoptotic; BCL2, antiapoptotic), steroidogenesis (CYP17, CYP19A1), and demethylation (KDM1AX1, KDM1AX2, KDM3A). The isolated PA follicles (n = 174) were cultured in vitro for 6 days in α-MEM+ in either absence (control) or presence of anethole. After culture, EA follicles were evaluated for methylation, mRNA abundance, and morphometry. Follicle diameter increased after culture, regardless of treatment. The methylation profile and the mRNA abundance were similar between in vivo-grown PA and EA follicles. Anethole treatment led to higher H3K4me3 fluorescence intensity in EA follicles. The mRNA abundances of BAX, CYP17, and CYP19A1 were higher, and BCL2 and KDM3A were lower in in vitro-grown EA follicles than in vivo-grown follicles. In conclusion, in vitro follicle culture affected H3K4me3 fluorescence intensity, mRNA abundance of apoptotic genes, and steroidogenic and demethylase enzymes compared with in vivo-grown follicles.


Assuntos
Cabras , Lisina , Animais , Proteína X Associada a bcl-2/metabolismo , Cabras/metabolismo , Histonas , Esteroide 17-alfa-Hidroxilase/metabolismo , RNA Mensageiro/genética , Oócitos/metabolismo
6.
Animals (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685032

RESUMO

Vitrification is essential for successful tissue cryopreservation and biobanking in wild cats. This study aimed to compare different methods of vitrification (Ovarian Tissue Cryosystem-OTC, Straws-STW, and Solid Surface vitrification-SSV) for testicular fragment vitrification in tom cats. Testicular fragments were recovered from five adult tom cats and subjected to equilibrium vitrification using different cryovials and methods under the same conditions of vitrification solutions and cryoprotectants. The efficiencies of the methods were evaluated using histological analysis of spermatogonia and Sertoli cell nuclei, seminiferous tubular basement membrane detachment, and the gonadal epithelium shrinkage score scale. Cell viability was assessed using Hoechst PI and Terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay. The results showed that OTC is an effective vitrification method for maintaining the distinction between spermatogonia and Sertoli cells. OTC was similar to the control for basal membrane detachment parameters (p = 0.05). Epithelial shrinkage was low in the SSV group, which showed the highest percentage of viable cells among the vitrified groups (p = 0.0023). The OTC and SSV vitrification methods were statistically similar in terms of the percentage of TUNEL-positive cells (p = 0.05). Therefore, OTC and SSV provide favorable conditions for maintaining viable cat testicular tissue cells after vitrification.

7.
Anim Reprod Sci ; 257: 107327, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696223

RESUMO

This study investigated the effects of cyclic adenosine monophosphate modulating during cumulus-oocyte complexes (COCs) pre-maturation and the role of melatonin on in vitro maturation (IVM) of bovine COCs. In experiment one, COCs were pre-matured for 8 h in control medium or with 3-isobutyl-1-methylxanthine (IBMX) and forskolin, IBMX and C-type natriuretic peptide, c-type natriuretic peptide and forskolin or IBMX, forskolin and c-type natriuretic peptide. Then, meiotic progression was evaluated. In experiment two, COCs were pre-matured, followed by IVM in control medium alone or with 10-6, 10-7 or 10-8 M melatonin. After IVM, chromatin configuration, transzonal projections (TZPs), reactive oxygen species, mitochondrial distribution, ultrastructure and mRNA expression for antioxidant enzymes were evaluated. In experiment 1, COCs pre-matured with both C-type natriuretic peptide and forskolin or C-type natriuretic peptide, forskolin and IBMX had lower meiotic resumption rate when compared to control. Considering that IBMX had not an additional effect to potentiate inhibition of meiotic resumption, a combination of C-type natriuretic peptide and forskolin was chosen. In experiment 2, COCs matured with 10-8 M melatonin had greater rates of meiotic resumption when compared to the other treatments (P < 0.05). The COCs matured with 10-7 or 10-8 M melatonin had greater mitochondrial activity (P < 0.05), while those matured with 10-6 or 10-8 M of melatonin had greater levels of TZPs. Ultrastructure of oocyte and cumulus cells after IVM with melatonin was relatively well preserved. COCs matured with 10-8 M melatonin increased mRNA expression for superoxide dismutase (SOD) and catalase (CAT) (P < 0.05), when compared to non-cultured and pre-matured COCs, respectively. In conclusion, bovine COC pre-maturation with C-type natriuretic peptide and forskolin, followed by IVM with 10-8 M melatonin improves meiotic resumption rates, TZPs, mitochondrial distribution and mRNA expression for SOD and CAT.


Assuntos
Melatonina , Animais , Bovinos , Feminino , Melatonina/farmacologia , Melatonina/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Peptídeo Natriurético Tipo C/farmacologia , Colforsina/farmacologia , Colforsina/metabolismo , Oócitos/fisiologia , AMP Cíclico/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Células do Cúmulo
8.
Front Plant Sci ; 14: 1320552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259931

RESUMO

Climate changes boosted the frequency and severity of drought and heat events, with aggravated when these stresses occur simultaneously, turning crucial to unveil the plant response mechanisms to such harsh conditions. Therefore, plant responses/resilience to single and combined exposure to severe water deficit (SWD) and heat were assessed in two cultivars of the main coffee-producing species: Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered plants (WW) were exposed to SWD under an adequate temperature of 25/20°C (day/night), and thereafter submitted to a gradual increase up to 42/30°C, and a 14-d recovery period (Rec14). Greater protective response was found to single SWD than to single 37/28°C and/or 42/30°C (except for HSP70) in both cultivars, but CL153-SWD plants showed the larger variations of leaf thermal imaging crop water stress index (CWSI, 85% rise at 37/28°C) and stomatal conductance index (IG, 66% decline at 25/20°C). Both cultivars revealed great resilience to SWD and/or 37/28°C, but a tolerance limit was surpassed at 42/30°C. Under stress combination, Icatu usually displayed lower impacts on membrane permeability, and PSII function, likely associated with various responses, usually mostly driven by drought (but often kept or even strengthened under SWD and 42/30°C). These included the photoprotective zeaxanthin and lutein, antioxidant enzymes (superoxide dismutase, Cu,Zn-SOD; ascorbate peroxidase, APX), HSP70, arabinose and mannitol (involving de novo sugar synthesis), contributing to constrain lipoperoxidation. Also, only Icatu showed a strong reinforcement of glutathione reductase activity under stress combination. In general, the activities of antioxidative enzymes declined at 42/30°C (except Cu,Zn-SOD in Icatu and CAT in CL153), but HSP70 and raffinose were maintained higher in Icatu, whereas mannitol and arabinose markedly increased in CL153. Overall, a great leaf plasticity was found, especially in Icatu that revealed greater responsiveness of coordinated protection under all experimental conditions, justifying low PIChr and absence of lipoperoxidation increase at 42/30°C. Despite a clear recovery by Rec14, some aftereffects persisted especially in SWD plants (e.g., membranes), relevant in terms of repeated stress exposure and full plant recovery to stresses.

9.
Biosci Rep ; 42(11)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36254835

RESUMO

All 37 mitochondrial DNA (mtDNA)-encoded genes involved with oxidative phosphorylation and intramitochondrial protein synthesis, and several nuclear-encoded genes involved with mtDNA replication, transcription, repair and recombination are conserved between the fruit fly Drosophila melanogaster and mammals. This, in addition to its easy genetic tractability, has made Drosophila a useful model for our understanding of animal mtDNA maintenance and human mtDNA diseases. However, there are key differences between the Drosophila and mammalian systems that feature the diversity of mtDNA maintenance processes inside animal cells. Here, we review what is known about mtDNA maintenance in Drosophila, highlighting areas for which more research is warranted and providing a perspective preliminary in silico and in vivo analyses of the tissue specificity of mtDNA maintenance processes in this model organism. Our results suggest new roles (or the lack thereof) for well-known maintenance proteins, such as the helicase Twinkle and the accessory subunit of DNA polymerase γ, and for other Drosophila gene products that may even aid in shedding light on mtDNA maintenance in other animals. We hope to provide the reader some interesting paths that can be taken to help our community show how Drosophila may impact future mtDNA maintenance research.


Assuntos
DNA Mitocondrial , Proteínas de Drosophila , Animais , Humanos , DNA Mitocondrial/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Proteínas de Drosophila/metabolismo , Replicação do DNA/genética , Proteínas Mitocondriais/genética , Mamíferos/metabolismo
10.
Plants (Basel) ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297726

RESUMO

Climate changes with global warming associated with rising atmospheric [CO2] can strongly impact crop performance, including coffee, which is one of the most world's traded agricultural commodities. Therefore, it is of utmost importance to understand the mechanisms of heat tolerance and the potential role of elevated air CO2 (eCO2) in the coffee plant response, particularly regarding the antioxidant and other protective mechanisms, which are crucial for coffee plant acclimation. For that, plants of Coffea arabica cv. Geisha 3, cv. Marsellesa and their hybrid (Geisha 3 × Marsellesa) were grown for 2 years at 25/20 °C (day/night), under 400 (ambient CO2, aCO2) or 700 µL (elevated CO2, eCO2) CO2 L-1, and then gradually submitted to a temperature increase up to 42/30 °C, followed by recovery periods of 4 (Rec4) and 14 days (Rec14). Heat (37/28 °C and/or 42/30 °C) was the major driver of the response of the studied protective molecules and associated genes in all genotypes. That was the case for carotenoids (mostly neoxanthin and lutein), but the maximal (α + ß) carotenes pool was found at 37/28 °C only in Marsellesa. All genes (except VDE) encoding for antioxidative enzymes (catalase, CAT; superoxide dismutases, CuSODs; ascorbate peroxidases, APX) or other protective proteins (HSP70, ELIP, Chape20, Chape60) were strongly up-regulated at 37/28 °C, and, especially, at 42/30 °C, in all genotypes, but with maximal transcription in Hybrid plants. Accordingly, heat greatly stimulated the activity of APX and CAT (all genotypes) and glutathione reductase (Geisha3, Hybrid) but not of SOD. Notably, CAT activity increased even at 42/30 °C, concomitantly with a strongly declined APX activity. Therefore, increased thermotolerance might arise through the reinforcement of some ROS-scavenging enzymes and other protective molecules (HSP70, ELIP, Chape20, Chape60). Plants showed low responsiveness to single eCO2 under unstressed conditions, while heat promoted changes in aCO2 plants. Only eCO2 Marsellesa plants showed greater contents of lutein, the pool of the xanthophyll cycle components (V + A + Z), and ß-carotene, compared to aCO2 plants at 42/30 °C. This, together with a lower CAT activity, suggests a lower presence of H2O2, likely also associated with the higher photochemical use of energy under eCO2. An incomplete heat stress recovery seemed evident, especially in aCO2 plants, as judged by the maintenance of the greater expression of all genes in all genotypes and increased levels of zeaxanthin (Marsellesa and Hybrid) relative to their initial controls. Altogether, heat was the main response driver of the addressed protective molecules and genes, whereas eCO2 usually attenuated the heat response and promoted a better recovery. Hybrid plants showed stronger gene expression responses, especially at the highest temperature, when compared to their parental genotypes, but altogether, Marsellesa showed a greater acclimation potential. The reinforcement of antioxidative and other protective molecules are, therefore, useful biomarkers to be included in breeding and selection programs to obtain coffee genotypes to thrive under global warming conditions, thus contributing to improved crop sustainability.

11.
Zygote ; 30(6): 882-890, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36148786

RESUMO

This study aims to evaluate the effects of N-acetylcysteine (NAC) on bovine oocyte maturation, mitochondrial activity and transzonal projections (TZP), as well as on the levels of reactive oxygen species (ROS) and messenger RNA (mRNA) for catalase (CAT) superoxide dismutase (SOD), periredoxin-6 (Prdx6), glutathione peroxidase (GPx), growth and differentiation factor-9 (GDF9), histone H1Foo, cyclin B1 (CCNB1) and c-Mos. Bovine cumulus-oocyte complexes (COC) of medium-sized antral follicles (3.0-6.0 mm) were prematured in TCM-199 for 8 h at 38.5°C in 5% CO2. After prematuration in the presence of forskolin and C-type natriuretic peptide, COCs were matured in TCM-199 alone or with 0.1, 0.5 or 2.5 mM NAC. Then, oocytes were classified according to the stage of chromatin. Furthermore, mitochondrial activity and intracellular levels of ROS and TZP were also evaluated. The levels of mRNAs for CAT, SOD, Prdx6, GPx, GDF9, H1Foo, CCNB1 and c-Mos were evaluated using real-time polymerase chain reaction (RT-PCR). The results showed that NAC significantly increased the percentages of oocytes with resumption of meiosis when compared with those oocytes matured in control medium. Oocytes had homogeneous mitochondrial distribution, and those cultured with 0.1 and 0.5 mM NAC had lower levels of ROS when compared with the control. In addition, 0.5 mM NAC reduced TZP and the levels of mRNA for CCNB1. In contrast, NAC did not influence the expression of CAT, GPx, Prdx6, SOD, GDF9, H1Foo, and c-Mos. In conclusion, 0.5 mM NAC reduced the levels of ROS, TZP and mRNA for CCNB1, and improved in vitro resumption of meiosis in oocytes from medium-sized bovine antral follicles.


Assuntos
Acetilcisteína , Técnicas de Maturação in Vitro de Oócitos , Bovinos , Animais , Técnicas de Maturação in Vitro de Oócitos/métodos , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Oócitos , Meiose , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
J Plant Physiol ; 276: 153788, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35944291

RESUMO

As drought threatens crop productivity it is crucial to characterize the defense mechanisms against water deficit and unveil their interaction with the expected rise in the air [CO2]. For that, plants of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu grown under 380 (aCO2) or 700 µL L-1 (eCO2) were exposed to moderate (MWD) and severe (SWD) water deficits. Responses were characterized through the activity and/or abundance of a selected set of proteins associated with antioxidative (e.g., Violaxanthin de-epoxidase, Superoxide dismutase, Ascorbate peroxidases, Monodehydroascorbate reductase), energy/sugar (e.g., Ferredoxin-NADP reductase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, sucrose synthase, mannose-6-phosphate isomerase, Enolase), and lipid (Lineolate 13S-lipoxygenase) processes, as well as with other antioxidative (ascorbate) and protective (HSP70) molecules. MWD caused small changes in both genotypes regardless of [CO2] level while under the single imposition to SWD, only Icatu showed a global reinforcement of most studied proteins supporting its tolerance to drought. eCO2 alone did not promote remarkable changes but strengthened a robust multi-response under SWD, even supporting the reversion of impacts already observed by CL153 at aCO2. In the context of climate changes where water constraints and [CO2] levels are expected to increase, these results highlight why eCO2 might have an important role in improving drought tolerance in Coffea species.


Assuntos
Coffea , Aclimatação/genética , Antioxidantes/metabolismo , Carboidratos , Dióxido de Carbono/metabolismo , Coffea/fisiologia , Secas , Lipídeos , Proteômica , Açúcares/metabolismo , Água/metabolismo
13.
Metabolites ; 11(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34564409

RESUMO

Actinorhizal plants have been regarded as promising species in the current climate change context due to their high tolerance to a multitude of abiotic stresses. While combined salt-heat stress effects have been studied in crop species, their impact on the model actinorhizal plant, Casuarina glauca, has not yet been fully addressed. The effect of single salt (400 mM NaCl) and heat (control at 26/22 °C, supra optimal temperatures at 35/22 °C and 45/22 °C day/night) conditions on C. glauca branchlets was characterised at the physiological level, and stress-induced metabolite changes were characterised by mass spectrometry-based metabolomics. C. glauca could withstand single salt and heat conditions. However, the harshest stress condition (400 mM NaCl, 45 °C) revealed photosynthetic impairments due to mesophyll and membrane permeability limitations as well as major stress-specific differential responses in C and N metabolism. The increased activity of enzymatic ROS scavengers was, however, revealed to be sufficient to control the plant oxidative status. Although C. glauca could tolerate single salt and heat stresses, their negative interaction enhanced the effects of salt stress. Results demonstrated that C. glauca responses to combined salt-heat stress could be explained as a sum of the responses from each single applied stress.

14.
J Plant Physiol ; 261: 153427, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940557

RESUMO

Metamitron (MET) is a fruitlet thinning compound for apple trees, needing better understanding of its action on leaf energy metabolism, depending on nighttime temperature. A trial under environmental controlled conditions was set with 'Golden Reinders' potted trees, under 25/7.5 and 25/15 °C (diurnal/nighttime temperature), with (MET, 247.5 ppm) or without (CTR) application, and considering the monitoring of photosynthetic and respiration components from day 1 (D1) to 14 (D14). Net photosynthesis (Pn) decline promoted by MET after D1 was not stomatal related. Instead, non-stomatal constraints, reflected on the photosynthetic capacity (Amax), included a clear photosystem (PS) II inhibition (but barely of PSI), as shown by severe reductions in thylakoid electron transport at PSII level, maximal (Fv/Fm) and actual (Fv'/Fm') PSII photochemical efficiencies, estimate of quantum yield of linear electron transport (Y(II)), and the rise in PSII photoinhibition status (Fs/Fm' and PIChr) and uncontrolled energy dissipation (Y(NO)). To Pn inhibition also contributed the impact in RuBisCO along the entire experiment, regardless of night temperature, here reported for the first time. Globally, MET impact on the photosynthetic parameters was usually greater under 7.5 °C, with maximal impacts between D4 and D7, probably associated to a less active metabolism at lower temperature. Cellular energy metabolism was further impaired under 7.5 °C, through moderate inhibition of NADH-dependent malate dehydrogenase (MDH) and pyruvate kinase (PK) enzymes involved in respiration, in contrast with the increase of dark respiration in MET 7.5 until D7. The lower impact on PK and MDH under 15 °C and a likely global higher active metabolism at that temperature would agree with the lowest sucrose levels in MET 15 at D4 and D7. Our findings showed that MET alters the cell energy machinery in a temperature dependent manner, affecting the sucrose balance mainly at 15 °C, justifying the observed greater thinning potential.


Assuntos
Malus/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Temperatura , Triazinas/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Malus/efeitos dos fármacos , Fotoperíodo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo , Triazinas/administração & dosagem
15.
Methods Mol Biol ; 2281: 313-322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847968

RESUMO

Defects in mitochondrial DNA (mtDNA) maintenance may lead to disturbances in mitochondrial homeostasis and energy production in eukaryotic cells, causing diseases. During mtDNA replication, the mitochondrial single-stranded DNA-binding protein (mtSSB) stabilizes and protects the exposed single-stranded mtDNA from nucleolysis; perhaps more importantly, it appears to coordinate the actions of both the replicative mtDNA helicase Twinkle and DNA polymerase gamma at the replication fork. Here, we describe a helicase stimulation protocol to test in vitro the functional interaction between mtSSB and variant forms of Twinkle. We show for the first time that the C-terminal tail of Twinkle is important for such an interaction, and that it negatively regulates helicase unwinding activity in a salt-dependent manner.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Mutação , Sítios de Ligação , DNA Helicases/genética , Replicação do DNA , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Humanos , Proteínas Mitocondriais/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
16.
Parasitol Int ; 83: 102347, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33862253

RESUMO

Leishmania is an obligate intracellular parasite that primarily inhabits macrophages. The destruction of the parasite in the host cell is a fundamental mechanism for infection control. In addition, inhibition of the leishmanicidal activity of macrophages seems to be related to the ability of some species to inhibit the production of nitric oxide (NO) by depleting arginine. Some species of Leishmania have the ability to produce NO from a constitutive nitric oxide synthase-like enzyme (cNOS-like). However, the localization of cNOS-like in Leishmania has not been described before. As such, this study was designed to locate cNOS-like enzyme and NO production in promastigotes of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis. NO production was initially quantified by flow cytometry, which indicated a significant difference in NO production between L. (L.) amazonensis (GMFC = 92.17 +/- 4.6) and L. (V.) braziliensis (GMFC = 18.89 +/- 2.29) (P < 0.05). Analysis of cNOS expression by immunoblotting showed more expression in L. (L.) amazonensis versus L. (V.) braziliensis. Subsequently, cNOS-like immunolabeling was observed in promastigotes in regions near vesicles, the flagellar pocket and mitochondria, and small clusters of particles appeared to be fusing with vesicles suggestive of glycosomes, peroxisome-like-organelles that compartmentalize the glycolytic pathway in trypanosomatid parasites. In addition, confocal microscopy analysis demonstrated colocalization of cNOS-like and GAPDH, a specific marker for glycosomes. Thus, L. (L.) amazonensis produces greater amounts of NO than L. (V.) braziliensis, and both species present the cNOS-like enzyme inside glycosomes.


Assuntos
Leishmania braziliensis/enzimologia , Leishmania mexicana/enzimologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/biossíntese , Proteínas de Protozoários/metabolismo , Leishmaniose Cutânea/metabolismo , Leishmaniose Mucocutânea/metabolismo , Especificidade da Espécie
17.
Plants (Basel) ; 10(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513848

RESUMO

This study aimed to assess the efficiency of Ca enrichment in tubers of three genotypes of Solanum tuberosum L., through foliar spraying with CaCl2 and Ca(NO3)2 solutions. In this context, soil heterogeneity of three potato-growing fields, as well as the implications of Ca accumulation among tissues and some quality parameters were assessed. Three potato varieties (Agria, Picasso and Rossi) were grown in three production fields and during the life cycle, four pulverizations with calcium chloride (3 and 6 kg ha-1) or calcium nitrate (0.5, 2 and 4 kg ha-1) were applied. For screening the potential phytotoxicity, using Agria as a test system, the potential synthesis of photoassimilates was determined, and it was found that after the 3rd Ca application, leaf gas exchanges were moderately (net photosynthesis), to strongly (stomatal conductance) affected, although without impact on Ca accumulation in tubers. At harvest, the average Ca biofortification index varied between 5-40%, 40-35% and 4.3-13% in Agria, Picasso and Rossi, respectively. Moreover, the equatorial region of the tubers in general showed that Ca accumulation prevailed in the epidermis and, in some cases, in inner areas of the potato tubers. Biofortified tubers with Ca also showed some significant changes in total soluble solids and colorimetric parameters. It is concluded that Ca enrichment of potato tubers through foliar spraying complemented the xylem mass flow of Ca from roots, through phloem redistribution. Both fertilizers showed similar efficiency, but Rossi revealed a lower index of Ca accumulation, eventually due to different metabolic characteristics. Although affected by Ca enrichment, potato tubers maintained a high quality for industrial processing.

18.
Euro Surveill ; 26(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446304

RESUMO

The European monitoring of excess mortality for public health action (EuroMOMO) network monitors weekly excess all-cause mortality in 27 European countries or subnational areas. During the first wave of the coronavirus disease (COVID-19) pandemic in Europe in spring 2020, several countries experienced extraordinarily high levels of excess mortality. Europe is currently seeing another upsurge in COVID-19 cases, and EuroMOMO is again witnessing a substantial excess all-cause mortality attributable to COVID-19.


Assuntos
COVID-19/mortalidade , Mortalidade/tendências , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Causas de Morte , Criança , Pré-Escolar , Sistemas Computacionais , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , SARS-CoV-2 , Adulto Jovem
19.
Res Vet Sci ; 135: 432-441, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33218694

RESUMO

Ethanol is used routinely to dilute cell culture media supplements with little or no water solubility. This study evaluates the effect of low concentration of ethanol on the follicular development, oocyte maturation, hormone production, gene expression, and metabolomics profile of spent culture medium after long-term culture of isolated ovine preantral follicles. For this, follicles were cultured for 18 days in α-Minimum Essential Medium+ alone (control treatment) or supplemented with 100 ng/mL recombinant bovine FSH (rbFSH treatment) or with 0.2%-v/v ethanol (ethanol treatment). Ethanol treatment increased the percentage of degenerated follicles and oocytes significantly, however, it showed the highest estradiol secretion. Also, the rate of meiosis resumption was higher in ethanol treatment than Control treatment. Ethanol treatment decreased the mRNA levels of B-cell lymphoma 2 (BCL2), BCL2 associated X, Aquaporin 3, Connexin 43, Inhibin Subunit Beta A, kit ligand, Heat Shock Protein (HSP A1A) significantly when compared to the Control treatment. However, mRNA levels of cytochrome P450 family 19, and FSH receptors were significantly higher in ethanol treatment than in the Control treatment. The levels of some metabolites, which are likely amino acids, lipids, an analog of Cyclic guanosine monophosphate, and a derivative of phosphoinositol phosphate metabolism, had higher relative concentrations in ethanol and rbFSH treatments than the Control treatment. In conclusion, ethanol addition augmented the follicular and oocyte degeneration rates but increased the estradiol production and the meiotic resumption. Furthermore, the follicular metabolomic profile was similar between ethanol and rbFSH treatments being both treatments; however, different from the Control treatment.


Assuntos
Meios de Cultura/farmacologia , Estradiol/biossíntese , Etanol/farmacologia , Meiose/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Animais , Conexina 43/metabolismo , Conexina 43/farmacologia , Feminino , Hormônio Foliculoestimulante/farmacologia , Cabras , Oócitos/citologia , Oócitos/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , RNA Mensageiro/metabolismo , Ovinos , Técnicas de Cultura de Tecidos
20.
Tree Physiol ; 41(5): 708-727, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33215189

RESUMO

Growing water restrictions associated with climate changes constitute daunting challenges to crop performance. This study unveils the impacts of moderate (MWD) or severe (SWD) water deficit, and their interaction with air [CO2], on the photosynthetic apparatus of Coffea canephora Pierre ex A. Froehner cv. Conilon Clone 153 (CL153) and Coffea arabica L. cv. Icatu. Seven year-old potted plants grown under 380 (aCO2) or 700 µl l -1 (eCO2) [CO2] gradually reached predawn water potentials between -1.6 and -2.1 MPa (MWD), and below -3.5 MPa (SWD). Under drought, stomata closure was chiefly related to abscisic acid (ABA) rise. Increasing drought severity progressively affected gas exchange and fluorescence parameters in both genotypes, with non-stomatal limitations becoming gradually dominating, especially regarding the photochemical and biochemical components of CL153 SWD plants. In contrast, Icatu plants were highly tolerant to SWD, with minor, if any, negative impacts on the potential photosynthetic functioning and components (e.g., Amax, Fv/Fm, electron carriers, photosystems (PSs) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) activities). Besides, drought-stressed Icatu plants displayed increased abundance of a large set of proteins associated with the photosynthetic apparatus (PSs, light-harvesting complexes, cyclic electron flow, RuBisCO activase) regardless of [CO2]. Single eCO2 did not promote stomatal and photosynthetic down-regulation in both genotypes. Instead, eCO2 increased photosynthetic performance, moderately reinforced photochemical (PSs activity, electron carriers) and biochemical (RuBisCO, ribulose-5-phosphate kinase) components, whereas photoprotective mechanisms and protein abundance remained mostly unaffected. In both genotypes, under MWD, eCO2 superimposition delayed stress severity and promoted photosynthetic functioning with lower energy dissipation and PSII impacts, whereas stomatal closure was decoupled from increases in ABA. In SWD plants, most impacts on the photosynthetic performance were reduced by eCO2, especially in the moderately drought affected CL153 genotype, although maintaining RuBisCO as the most sensitive component, deserving special breeder's attention to improve coffee sustainability under future climate scenarios.


Assuntos
Coffea , Secas , Dióxido de Carbono , Fotossíntese , Ribulose-Bifosfato Carboxilase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...