Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomed Microdevices ; 22(3): 52, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770358

RESUMO

Although microfluidic micro-electromechanical systems (MEMS) are well suited to investigate the effects of mechanical force on large populations of cells, their high-throughput capabilities cannot be fully leveraged without optimizing the experimental conditions of the fluid and particles flowing through them. Parameters such as flow velocity and particle size are known to affect the trajectories of particles in microfluidic systems and have been studied extensively, but the effects of temperature and buffer viscosity are not as well understood. In this paper, we explored the effects of these parameters on the timing of our own cell-impact device, the µHammer, by first tracking the velocity of polystyrene beads through the device and then visualizing the impact of these beads. Through these assays, we find that the timing of our device is sensitive to changes in the ratio of inertial forces to viscous forces that particles experience while traveling through the device. This sensitivity provides a set of parameters that can serve as a robust framework for optimizing device performance under various experimental conditions, without requiring extensive geometric redesigns. Using these tools, we were able to achieve an effective throughput over 360 beads/s with our device, demonstrating the potential of this framework to improve the consistency of microfluidic systems that rely on precise particle trajectories and timing.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Microeletromecânicos/instrumentação , Soluções Tampão , Desenho de Equipamento , Microesferas , Tamanho da Partícula , Poliestirenos/química , Temperatura , Viscosidade
2.
Mol Biol Cell ; 26(9): 1665-74, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25739458

RESUMO

Drosophila immune cells, the hemocytes, undergo four stereotypical developmental migrations to populate the embryo, where they provide immune reconnoitering, as well as a number of non-immune-related functions necessary for proper embryogenesis. Here, we describe a role for Rho1 in one of these developmental migrations in which posteriorly located hemocytes migrate toward the head. This migration requires the interaction of Rho1 with its downstream effector Wash, a Wiskott-Aldrich syndrome family protein. Both Wash knockdown and a Rho1 transgene harboring a mutation that prevents Wash binding exhibit the same developmental migratory defect as Rho1 knockdown. Wash activates the Arp2/3 complex, whose activity is needed for this migration, whereas members of the WASH regulatory complex (SWIP, Strumpellin, and CCDC53) are not. Our results suggest a WASH complex-independent signaling pathway to regulate the cytoskeleton during a subset of hemocyte developmental migrations.


Assuntos
Movimento Celular , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/enzimologia , Hemócitos/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Drosophila melanogaster/citologia , Hemócitos/ultraestrutura , Ligação Proteica
3.
Dev Dyn ; 241(3): 608-26, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22275148

RESUMO

BACKGROUND: Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. RESULTS: We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. CONCLUSIONS: All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics.


Assuntos
Proteínas de Drosophila/biossíntese , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteínas dos Microfilamentos/biossíntese , Proteínas de Transporte Vesicular/biossíntese , Proteína da Síndrome de Wiskott-Aldrich/biossíntese , Síndrome de Wiskott-Aldrich/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Proteínas de Drosophila/análise , Proteínas de Drosophila/imunologia , Desenvolvimento Embrionário , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/imunologia , Oogênese , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/imunologia , Proteína da Síndrome de Wiskott-Aldrich/análise , Proteína da Síndrome de Wiskott-Aldrich/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...