Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Microbiol Spectr ; 10(3): e0257921, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35536039

RESUMO

Antibiotics are important for the treatment and prevention of invasive Haemophilus influenzae disease. Reduced susceptibility to clinically relevant drugs, except ampicillin, has been uncommon in the United States. Susceptibility of 700 invasive H. influenzae isolates, collected through population-based surveillance during 2016, was assessed for 15 antibiotics using broth microdilution, according to the CLSI guidelines; a subset of 104 isolates were also assessed for rifampin susceptibility using Etest. Genomes were sequenced to identify genes and mutations known to be associated with reduced susceptibility to clinically relevant drugs. A total of 508 (72.6%) had reduced susceptibility to at least one antibiotic and more than half of the isolates exhibited reduced susceptibility to only one (33.6%) or two (21.6%) antibiotic classes. All tested isolates were susceptible to rifampin, a chemoprophylaxis agent, and <1% (n = 3) of isolates had reduced susceptibility to third generation cephalosporins, which are recommended for invasive disease treatment. In contrast, ampicillin resistance was more common (28.1%) and predominantly associated with the detection of a ß-lactamase gene; 26.2% of isolates in the collection contained either a TEM-1 or ROB-1 ß-lactamase gene, including 88.8% of ampicillin-resistant isolates. ß-lactamase negative ampicillin-resistant (BLNAR) isolates were less common and associated with ftsI mutations; resistance to amoxicillin-clavulanate was detected in <2% (n = 13) of isolates. The proportion of reduced susceptibility observed was higher among nontypeable H. influenzae and serotype e than other serotypes. US invasive H. influenzae isolates remain predominantly susceptible to clinically relevant antibiotics except ampicillin, and BLNAR isolates remain uncommon. IMPORTANCE Antibiotics play an important role for the treatment and prevention of invasive Haemophilus influenzae disease. Antimicrobial resistance survey of invasive H. influenzae isolates collected in 2016 showed that the US H. influenzae population remained susceptible to clinically relevant antibiotics, except for ampicillin. Detection of approximately a quarter ampicillin-resistant and ß-lactamase containing strains demonstrates that resistance mechanisms can be acquired and sustained within the H. influenzae population, highlighting the continued importance of antimicrobial resistance surveillance for H. influenzae to monitor susceptibility trends and mechanisms of resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Haemophilus influenzae , Ampicilina/farmacologia , Ampicilina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Haemophilus/tratamento farmacológico , Infecções por Haemophilus/epidemiologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/genética , Humanos , Testes de Sensibilidade Microbiana , Rifampina/farmacologia , Rifampina/uso terapêutico , Estados Unidos/epidemiologia , beta-Lactamases/genética
2.
Front Microbiol ; 13: 815044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250931

RESUMO

In January and February 2015, Neisseria meningitidis serogroup B (NmB) outbreaks occurred at two universities in the United States, and mass vaccination campaigns using MenB vaccines were initiated as part of a public health response. Meningococcal carriage evaluations were conducted concurrently with vaccination campaigns at these two universities and at a third university, where no NmB outbreak occurred. Meningococcal isolates (N = 1,514) obtained from these evaluations were characterized for capsule biosynthesis by whole-genome sequencing (WGS). Functional capsule polysaccharide synthesis (cps) loci belonging to one of seven capsule genogroups (B, C, E, W, X, Y, and Z) were identified in 122 isolates (8.1%). Approximately half [732 (48.4%)] of isolates could not be genogrouped because of the lack of any serogroup-specific genes. The remaining 660 isolates (43.5%) contained serogroup-specific genes for genogroup B, C, E, W, X, Y, or Z, but had mutations in the cps loci. Identified mutations included frameshift or point mutations resulting in premature stop codons, missing or fragmented genes, or disruptions due to insertion elements. Despite these mutations, 49/660 isolates expressed capsule as observed with slide agglutination, whereas 45/122 isolates with functional cps loci did not express capsule. Neither the variable capsule expression nor the genetic variation in the cps locus was limited to a certain clonal complex, except for capsule null isolates (predominantly clonal complex 198). Most of the meningococcal carriage isolates collected from student populations at three US universities were non-groupable as a result of either being capsule null or containing mutations within the capsule locus. Several mutations inhibiting expression of the genes involved with the synthesis and transport of the capsule may be reversible, allowing the bacteria to switch between an encapsulated and non-encapsulated state. These findings are particularly important as carriage is an important component of the transmission cycle of the pathogen, and understanding the impact of genetic variations on the synthesis of capsule, a meningococcal vaccine target and an important virulence factor, may ultimately inform strategies for control and prevention of disease caused by this pathogen.

3.
J Infect Dis ; 225(11): 1871-1875, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35266516

RESUMO

BACKGROUND: Historically, antimicrobial resistance has been rare in US invasive meningococcal disease cases. METHODS: Meningococcal isolates (n = 695) were collected through population-based surveillance, 2012-2016, and national surveillance, 2015-2016. Antimicrobial susceptibility was assessed by broth microdilution. Resistance mechanisms were characterized using whole-genome sequencing. RESULTS: All isolates were susceptible to 6 antibiotics (cefotaxime, ceftriaxone, meropenem, rifampin, minocycline, and azithromycin). Approximately 25% were penicillin or ampicillin intermediate; among these, 79% contained mosaic penA gene mutations. Less than 1% of isolates were penicillin, ampicillin, ciprofloxacin, or levofloxacin resistant. CONCLUSIONS: Penicillin- and ampicillin-intermediate isolates were common, but resistance to clinically relevant antibiotics remained rare.


Assuntos
Infecções Meningocócicas , Neisseria meningitidis , Ampicilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftriaxona/farmacologia , Ciprofloxacina/farmacologia , Humanos , Infecções Meningocócicas/epidemiologia , Testes de Sensibilidade Microbiana , Neisseria meningitidis/genética , Penicilinas , Estados Unidos/epidemiologia
4.
Vet Med Sci ; 6(4): 975-979, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32613739

RESUMO

Dogs are a potential source of zoonotic Salmonella transmission. We had previously estimated the prevalence of Salmonella shedding among shelter dogs throughout Texas using a repeated cross-sectional study design. Our current objectives were to fully characterize the Salmonella isolates and to assess their relatedness, using whole-genome sequencing. Antimicrobial resistance (AMR) genes were detected in 4/27 (15%) of the isolates. The fosfomycin resistance gene fosA7 was identified in two isolates; to our knowledge, there are no published reports of this gene in canine Salmonella isolates. The biocide resistance gene qacEdelta1, conferring resistance to quaternary ammonium compounds, was detected in an isolate that had four additional AMR genes. The most frequently identified serotypes were Newport (6/27, 22%) and Javiana (4/27, 15%), both of which were widespread among animal shelters. For these serotypes, there was evidence of both transmission of Salmonella within the shelter environment and separate introductions of Salmonella into a shelter. Several canine Salmonella isolates were closely related to human clinical isolates (four canine isolates within 10 SNPs and six more within 20 SNPs), suggesting a shared pathogen population. Educational outreach programmes targeting animal shelter workers would be useful for optimizing knowledge of Salmonella and other canine-associated zoonotic pathogens.


Assuntos
Derrame de Bactérias , Doenças do Cão/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica/genética , Animais , Cães , Texas , Sequenciamento Completo do Genoma/veterinária
5.
Sex Transm Dis ; 47(8): 541-548, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520884

RESUMO

BACKGROUND: We conducted a Neisseria meningitidis (Nm) carriage study among men who have sex with men (MSM) to explore possible sexual transmission. METHODS: We paired information on patient characteristics with oropharyngeal, rectal, and urethral Nm culture results to assess associations with Nm carriage among 706 MSM at New York City sexual health clinics. The Nm isolates were characterized by whole genome sequencing. RESULTS: Twenty-three percent (163 of 706) of MSM were Nm carriers. Oropharyngeal carriage was 22.6% (159 of 703), rectal 0.9% (6 of 695), and urethral 0.4% (3 of 696). Oropharyngeal carriage was associated with the following recent (past 30 days) exposures: 3 or more men kissed (adjusted relative risk [aRR], 1.38; 95% confidence interval [CI], 1.03-1.86), performing oral sex (aRR, 1.81; 95% CI, 1.04-3.18), and antibiotic use (aRR, 0.33; 95% CI, 0.19-0.57). Sixteen clonal complexes were identified; 27% belonged to invasive lineages. CONCLUSIONS: Our findings suggest that oral sex and the number of recent kissing partners contribute to Nm carriage in MSM.


Assuntos
Neisseria meningitidis , Saúde Sexual , Minorias Sexuais e de Gênero , Homossexualidade Masculina , Humanos , Masculino , Neisseria meningitidis/genética , Cidade de Nova Iorque/epidemiologia , Comportamento Sexual
6.
mSphere ; 5(2)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269159

RESUMO

In 2015 and 2016, meningococcal carriage evaluations were conducted at two universities in the United States following mass vaccination campaigns in response to Neisseria meningitidis serogroup B (NmB) disease outbreaks. A simultaneous carriage evaluation was also conducted at a university near one of the outbreaks, where no NmB cases were reported and no mass vaccination occurred. A total of ten cross-sectional carriage evaluation rounds were conducted, resulting in 1,514 meningococcal carriage isolates collected from 7,001 unique participants; 1,587 individuals were swabbed at multiple time points (repeat participants). All isolates underwent whole-genome sequencing. The most frequently observed clonal complexes (CC) were CC198 (27.3%), followed by CC1157 (17.4%), CC41/44 (9.8%), CC35 (7.4%), and CC32 (5.6%). Phylogenetic analysis identified carriage isolates that were highly similar to the NmB outbreak strains; comparative genomics between these outbreak and carriage isolates revealed genetic changes in virulence genes. Among repeat participants, 348 individuals carried meningococcal bacteria during at least one carriage evaluation round; 50.3% retained N. meningitidis carriage of a strain with the same sequence type (ST) and CC across rounds, 44.3% only carried N. meningitidis in one round, and 5.4% acquired a new N. meningitidis strain between rounds. Recombination, point mutations, deletions, and simple sequence repeats were the most frequent genetic mechanisms found in isolates collected from hosts carrying a strain of the same ST and CC across rounds. Our findings provide insight on the dynamics of meningococcal carriage among a population that is at higher risk for invasive meningococcal disease than the general population.IMPORTANCE U.S. university students are at a higher risk of invasive meningococcal disease than the general population. The responsible pathogen, Neisseria meningitidis, can be carried asymptomatically in the oropharynx; the dynamics of meningococcal carriage and the genetic features that distinguish carriage versus disease states are not completely understood. Through our analyses, we aimed to provide data to address these topics. We whole-genome sequenced 1,514 meningococcal carriage isolates from individuals at three U.S. universities, two of which underwent mass vaccination campaigns following recent meningococcal outbreaks. We describe the within-host genetic changes among individuals carrying a strain with the same molecular type over time, the primary strains being carried in this population, and the genetic differences between closely related outbreak and carriage strains. Our results provide detailed information on the dynamics of meningococcal carriage and the genetic differences in carriage and outbreak strains, which can inform future efforts to reduce the incidence of invasive meningococcal disease.


Assuntos
Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Infecções Meningocócicas/epidemiologia , Neisseria meningitidis/genética , Filogenia , Estudos Transversais , Surtos de Doenças , Genótipo , Humanos , Infecções Meningocócicas/microbiologia , Nasofaringe/microbiologia , Neisseria meningitidis/classificação , Sorogrupo , Estudantes , Estados Unidos/epidemiologia , Universidades , Sequenciamento Completo do Genoma
7.
Sci Rep ; 10(1): 632, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959912

RESUMO

Asymptomatic oropharyngeal carriage of Neisseria meningitidis peaks in adolescence and young adulthood. Following a meningococcal disease outbreak at a U.S. college, we profiled the oropharyngeal microbiomes of 158 students to identify associations between bacterial community composition and meningococcal carriage or risk factors for carriage, including male gender, smoking, and frequent social mixing. Metagenomic shotgun sequencing identified 268 bacterial taxa at the genus or species level, with Streptococcus, Veillonella, and Rothia species being most abundant. Microbiome composition showed weak associations with meningococcal carriage and risk factors for carriage. N. meningitidis abundance was positively correlated with that of Fusobacterium nucleatum, consistent with hypothesized propionic acid cross-feeding. Additional species had positive abundance correlations with N. meningitidis, including Aggregatibacter aphrophilus, Campylobacter rectus, Catonella morbi, Haemophilus haemolyticus, and Parvimonas micra. N. meningitidis abundance was negatively correlated with unidentified Veillonella species. Several of these species are commonly found in dental plaque, while N. meningitidis is primarily found in the pharynx, suggesting that ecological interactions extend throughout the oral cavity. Although risk factors for meningococcal carriage do not strongly impact most bacterial species in the oropharynx, variation in the upper respiratory tract microbiome may create conditions that are more or less favorable for N. meningitidis carriage.


Assuntos
Surtos de Doenças , Meningite Meningocócica/epidemiologia , Meningite Meningocócica/microbiologia , Interações Microbianas , Microbiota/fisiologia , Orofaringe/microbiologia , Estudantes , Universidades , Adolescente , Portador Sadio , Feminino , Humanos , Masculino , Neisseria meningitidis , Fatores de Risco , Fatores Sexuais , Fumar , Comportamento Social , Streptococcus , Veillonella , Adulto Jovem
8.
BMC Genomics ; 20(1): 733, 2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31606037

RESUMO

BACKGROUND: Haemophilus influenzae (Hi) can cause invasive diseases such as meningitis, pneumonia, or sepsis. Typeable Hi includes six serotypes (a through f), each expressing a unique capsular polysaccharide. The capsule, encoded by the genes within the capsule locus, is a major virulence factor of typeable Hi. Non-typeable (NTHi) does not express capsule and is associated with invasive and non-invasive diseases. METHODS: A total of 395 typeable and 293 NTHi isolates were characterized by whole genome sequencing (WGS). Phylogenetic analysis and multilocus sequence typing were used to characterize the overall genetic diversity. Pair-wise comparisons were used to evaluate the capsule loci. A WGS serotyping method was developed to predict the Hi serotype. WGS serotyping results were compared to slide agglutination (SAST) or real-time PCR (rt-PCR) serotyping. RESULTS: Isolates of each Hi serotype clustered into one or two subclades, with each subclade being associated with a distinct sequence type (ST). NTHi isolates were genetically diverse, with seven subclades and 125 STs being detected. Regions I and III of the capsule locus were conserved among the six serotypes (≥82% nucleotide identity). In contrast, genes in Region II were less conserved, with only six gene pairs from all serotypes showing ≥56% nucleotide identity. The WGS serotyping method was 99.9% concordant with SAST and 100% concordant with rt-PCR in determining the Hi serotype. CONCLUSIONS: Genomic analysis revealed a higher degree of genetic diversity among NTHi compared to typeable Hi. The WGS serotyping method accurately predicted the Hi capsule type and can serve as an alternative method for Hi serotyping.


Assuntos
Cápsulas Bacterianas/genética , Genômica/métodos , Haemophilus influenzae/classificação , Polissacarídeos Bacterianos/genética , Técnicas de Tipagem Bacteriana , Variação Genética , Haemophilus influenzae/genética , Haemophilus influenzae/isolamento & purificação , Humanos , Tipagem de Sequências Multilocus , Filogenia , Sorotipagem , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
9.
J Dairy Sci ; 102(4): 3474-3479, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30738680

RESUMO

Our objectives were to evaluate the clinical efficacy of oral and intranasal administration of a commercial modified-live Salmonella Dublin vaccine in dairy calves and to determine the serologic response associated with these extralabel routes of administration. We conducted a randomized field trial with calves from a New York dairy farm following an outbreak of Salmonella Dublin. A total of 399 Holstein calves were allocated by pen to 3 treatment groups: oral vaccination, intranasal vaccination, and an unvaccinated control group. Administration of the vaccine through oral and intranasal routes did not have a significant effect on pneumonia incidence risk or weight gain; however, calves vaccinated orally and intranasally had lower mortality risk as compared with control calves. Among calves tested using a Salmonella Dublin ELISA, vaccination did not induce an increase in antibody production relative to control calves, indicating that oral and intranasal administration will not hinder diagnosis based on this assay.


Assuntos
Doenças dos Bovinos/prevenção & controle , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Salmonella enterica , Administração Intranasal , Administração Oral , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática , New York , Distribuição Aleatória , Vacinas contra Salmonella/administração & dosagem , Resultado do Tratamento , Vacinação , Vacinas Atenuadas
10.
Zoonoses Public Health ; 66(3): 337-342, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30537415

RESUMO

There are few epidemiologic studies on the shedding of Campylobacter among dogs in the United States, despite the potential public health implications. Our objectives were to estimate the prevalence of faecal Campylobacter shedding among Texas shelter dogs as detected by culture methods and to characterize the isolates by species and antimicrobial susceptibility. Using a cross-sectional study design, faecal samples were collected from 185 dogs in six animal shelters throughout Texas between May and December 2014. Four culture methods were used to isolate Campylobacter from samples, and isolates were characterized. The prevalence of Campylobacter shedding was 45.4% (84/185; 95% CI, 38.1%-52.9%). Of 294 isolates from the 84 positive dogs, 26 (8.8%) isolates from seven dogs were identified as Campylobacter jejuni. Two of the isolates from one dog demonstrated resistance to ciprofloxacin and nalidixic acid. Direct plating on mCCDA-CAT agar without enrichment identified the highest number of positive dogs (62%; 52/84). Incidence of ciprofloxacin-resistant Campylobacter infections among humans has increased over the last several years. Canine shedding of Campylobacter is a potential source of zoonotic transmission.


Assuntos
Infecções por Campylobacter/veterinária , Campylobacter jejuni/efeitos dos fármacos , Ciprofloxacina/farmacologia , Doenças do Cão/microbiologia , Farmacorresistência Bacteriana , Animais , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Estudos Transversais , Doenças do Cão/epidemiologia , Cães , Fezes/microbiologia , Abrigo para Animais , Humanos , Prevalência , Texas/epidemiologia , Zoonoses
11.
J Clin Microbiol ; 57(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567750

RESUMO

Invasive meningococcal disease is mainly caused by Neisseria meningitidis serogroups A, B, C, X, W, and Y. The serogroup is typically determined by slide agglutination serogrouping (SASG) and real-time PCR (RT-PCR). We describe a whole-genome sequencing (WGS)-based method to characterize the capsule polysaccharide synthesis (cps) locus, classify N. meningitidis serogroups, and identify mechanisms for nongroupability using 453 isolates from a global strain collection. We identified novel genomic organizations within functional cps loci, consisting of insertion sequence (IS) elements in unique positions that did not disrupt the coding sequence. Genetic mutations (partial gene deletion, missing genes, IS insertion, internal stop, and phase-variable off) that led to nongroupability were identified. The results of WGS and SASG were in 91% to 100% agreement for all serogroups, while the results of WGS and RT-PCR showed 99% to 100% agreement. Among isolates determined to be nongroupable by WGS (31 of 453), the results of all three methods agreed 100% for those without a capsule polymerase gene. However, 61% (WGS versus SASG) and 36% (WGS versus RT-PCR) agreements were observed for the isolates, particularly those with phase variations or internal stops in cps loci, which warrant further characterization by additional tests. Our WGS-based serogrouping method provides comprehensive characterization of the N. meningitidis capsule, which is critical for meningococcal surveillance and outbreak investigations.


Assuntos
Cápsulas Bacterianas/genética , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/genética , Sorogrupo , Cápsulas Bacterianas/metabolismo , Humanos , Filogenia
12.
MMWR Morb Mortal Wkly Rep ; 67(38): 1060-1063, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30260947

RESUMO

Meningococcal disease is a rare, but serious, bacterial infection that progresses rapidly and can be life-threatening, even with prompt antibiotic treatment. Men who have sex with men (MSM) have previously been reported to be at increased risk for meningococcal disease compared with other men, and recent outbreaks of serogroup C meningococcal disease among MSM have occurred (1). However, the epidemiology of meningococcal disease among MSM in the United States is not well described, in part, because information about MSM has not historically been collected as part of routine meningococcal disease surveillance. To better characterize and identify risk factors for meningococcal disease in general, supplementary data and isolates have been collected since 2015 through enhanced meningococcal disease surveillance activities. During 2015-2016, 271 cases of meningococcal disease in men aged ≥18 years were reported to the National Notifiable Diseases Surveillance System (NNDSS) in 45 states participating in this enhanced surveillance. Forty-eight (17.7%) cases were in men identified as MSM, including 17 (37.8%) with human immunodeficiency virus (HIV) infection. Among MSM, 39 (84.8%) cases were caused by Neisseria meningitidis serogroup C, whereas this serogroup was responsible for only 16.4% of cases among men who were not known to be MSM (non-MSM). Despite improvements in surveillance, MSM likely remain underascertained among men with meningococcal disease. Improved surveillance data are needed to understand the prevalence of and risk for meningococcal disease among MSM and inform policy and prevention strategies. Vaccination with quadrivalent meningococcal conjugate (MenACWY) vaccine is recommended for the control of meningococcal disease outbreaks caused by serogroups A, C, W, or Y, including during outbreaks among MSM; in addition, all persons aged ≥2 months with HIV infection should receive MenACWY vaccine because of the increased risk for meningococcal disease.


Assuntos
Surtos de Doenças , Homossexualidade Masculina/estatística & dados numéricos , Infecções Meningocócicas/epidemiologia , Vigilância da População , Adolescente , Adulto , Idoso , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
13.
Front Microbiol ; 8: 737, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507536

RESUMO

Salmonella Cerro has become one of the most prevalent Salmonella serotypes isolated from dairy cattle in several U.S. states, including New York where it represented 36% of all Salmonella isolates of bovine origin in 2015. This serotype is commonly isolated from dairy cattle with clinical signs of salmonellosis, including diarrhea and fever, although it has also been identified in herds without evidence of clinical disease or decreased production. To better understand the transmission patterns and drivers of its geographic spread, we have studied the genomic similarity and microevolution of S. Cerro isolates from the northeast U.S. and Texas. Eighty-three out of 86 isolates were confirmed as multilocus sequence type 367. We identified core genome SNPs in 57 upstate New York (NY), 2 Pennsylvania (PA), and 27 Texas S. Cerro isolates from dairy cattle, farm environments, raw milk, and one human clinical case and used them to construct a tip-dated phylogeny. S. Cerro isolates clustered in three distinct clades, including (i) clade I (n = 3; 2013) comprising isolates from northwest Texas (NTX), (ii) clade II (n = 14; 2009-2011, 2014) comprising isolates from NY, and (iii) clade III comprising isolates from NY, PA, and central Texas (CTX) in subclade IIIa (n = 45; 2008-2014), and only CTX isolates in subclade IIIb (n = 24; 2013). Temporal phylogenetic analysis estimated the divergence of these three clades from the most recent common ancestor in approximately 1980. The CTX clade IIIb was estimated to have evolved and diverged from the NY ancestor around 2004. Furthermore, gradual temporal loss of genes encoding a D-alanine transporter, involved in virulence, was observed. These genes were present in the isolates endemic to NTX clade I and were gradually lost in clades II and III. The virulence gene orgA, which is part of the Salmonella Pathogenicity Island 1, was lost in a subgroup of Texas isolates in clades I and IIIb. All S. Cerro isolates had an additional cytosine inserted in a cytosine-rich region of the virulence gene sopA, resulting in premature termination of translation likely responsible for loss of pathogenic capacity in humans. A group of closely related NY isolates was characterized by the loss of hydrogen sulfide production due to the truncation or complete loss of phsA. Our data suggest the ability of Salmonella to rapidly diverge and adapt to specific niches (e.g., bovine niche), and to modify virulence-related characteristics such as the ability to utilize tetrathionate as an alternative electron acceptor, which is commonly used to detect Salmonella. Overall, our results show that clinical outcome data and genetic data for S. Cerro isolates, such as truncations in virulence genes leading to novel pheno- and pathotypes, should be correlated to allow for accurate risk assessment.

14.
Vector Borne Zoonotic Dis ; 16(12): 752-757, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27827557

RESUMO

Wild birds may play an important role in maintaining and transmitting Salmonella. Their ability to travel large distances and their proximity to human habitations could make them a vehicle for bridging Salmonella from wild and domestic animals to humans. To determine the potential public health risk presented by urban birds, we investigated the prevalence of Salmonella among great-tailed grackles (Quiscalus mexicanus) and other cohabiting urban bird species. Fecal samples were collected from 114 birds communally roosting in parking lots of retail locations in Brazos County, Texas, from February through July of 2015. Great-tailed grackles and European starlings (Sturnus vulgaris) were the predominant species sampled. Standard bacteriologic culture methods were used to isolate Salmonella from samples, and isolates were characterized by serotyping and antimicrobial susceptibility testing. Overall, 1.8% (2/114) of samples were confirmed positive for Salmonella. Both positive birds were great-tailed grackles sampled in June, yielding a 2.6% (2/76) apparent prevalence among this species. Isolates were serotyped as Salmonella Typhimurium and found to be pan-susceptible based on the National Antimicrobial Resistance Monitoring System (NARMS) panel of antimicrobial agents. The occurrence of Salmonella in great-tailed grackles represents a potential threat to public health, particularly considering their population size and tendency to congregate near human establishments such as grocery stores.


Assuntos
Doenças das Aves/microbiologia , Columbiformes , Passeriformes , Salmonelose Animal/microbiologia , Salmonella/isolamento & purificação , Animais , Doenças das Aves/epidemiologia , Fezes/microbiologia , Feminino , Masculino , Salmonella/classificação , Salmonelose Animal/epidemiologia , Texas/epidemiologia
15.
Vector Borne Zoonotic Dis ; 16(12): 765-768, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27763822

RESUMO

The population size and geographic range of feral pigs in the United States are rapidly expanding. Nevertheless, the role of this invasive species in the ecology and transmission of zoonotic enteric pathogens is poorly understood. Our objectives were to describe the prevalence and diversity of Cryptosporidium and Giardia shedding among feral pigs throughout Texas and to identify risk factors for infection. Fecal samples were collected from feral pigs in Texas from February 2014 through May 2015. Cryptosporidium oocysts and Giardia cysts were detected using a direct immunofluorescence assay, and genotyping of positive samples was performed. The prevalence of Cryptosporidium shedding was 1.6% (6/370), and C. scrofarum and C. suis were identified. The prevalence of Giardia shedding was 4.3% (16/370), and assemblages A and E were identified. Cryptosporidium shedding was significantly more common among juvenile and subadult pigs than among adult pigs, but age group was not associated with Giardia shedding status. Feral pigs may serve as a source of Cryptosporidium and Giardia transmission to humans and livestock.


Assuntos
Criptosporidiose/parasitologia , Cryptosporidium/genética , Variação Genética , Giardia/genética , Giardíase/veterinária , Doenças dos Suínos/parasitologia , Animais , Criptosporidiose/epidemiologia , Giardíase/epidemiologia , Giardíase/parasitologia , Humanos , Prevalência , Suínos , Doenças dos Suínos/epidemiologia , Texas/epidemiologia
16.
Foodborne Pathog Dis ; 13(4): 205-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26954516

RESUMO

Dairy cattle are a reservoir of several Salmonella serovars that are leading causes of human salmonellosis. The objectives of this study were to estimate the environmental prevalence of Salmonella on dairy farms in Texas and to characterize the antimicrobial susceptibility of the isolates. Eleven dairy farms throughout Texas were sampled from August through October 2013, using a cross-sectional approach. Samples were collected from four locations within each farm (hospital pen, maternity pen, cow housing area, and calf housing area), and feces were collected from cull cows as available. Environmental and fecal samples were processed for Salmonella, and isolates were tested for susceptibility to 15 antimicrobial agents. Serovar characterization was performed on a subset of these isolates. Salmonella was isolated from 67.0% (236/352) of the environmental samples and 64.2% (43/67) of the cull cow fecal samples. Environmental samples from the maternity pen were significantly more likely to be Salmonella positive than samples from the cow and calf housing areas. Multidrug resistance was evident in 11.9% (27/226) of environmental isolates and 19.5% (8/41) of fecal isolates. Salmonella isolates from the calf housing area and maternity pen were significantly more likely to be multidrug resistant (MDR) than isolates from the cow housing area. The most common serovars found among the MDR isolates were Newport, Muenchen, and Typhimurium. These results help provide a focus for efforts to mitigate the burden of antimicrobial-resistant Salmonella at the preharvest level.


Assuntos
Antibacterianos/farmacologia , Doenças dos Bovinos/microbiologia , Indústria de Laticínios , Farmacorresistência Bacteriana Múltipla , Salmonelose Animal/microbiologia , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Estudos Transversais , Microbiologia Ambiental , Fezes/microbiologia , Feminino , Mucosa Intestinal/microbiologia , Masculino , Testes de Sensibilidade Microbiana/veterinária , Viabilidade Microbiana/efeitos dos fármacos , Prevalência , Reto/microbiologia , Salmonella/crescimento & desenvolvimento , Salmonelose Animal/epidemiologia , Especificidade da Espécie , Texas/epidemiologia
17.
Gut Pathog ; 7: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207144

RESUMO

BACKGROUND: For many putative Salmonella enterica subsp. enterica virulence genes, functional characterization across serovars has been limited. Cytolethal distending toxin B (CdtB) is an incompletely characterized virulence factor that is found not only in Salmonella enterica subsp. enterica serovar Typhi (Salmonella Typhi) and dozens of Gram negative bacterial pathogens, but also in non-typhoidal Salmonella (NTS) serovars. METHODS: A comparative genomics approach was performed to characterize sequence conservation of the typhoid toxin (TT), encoded in the CdtB-islet, between Salmonella Typhi and NTS serovars. The cytotoxic activity of representative Salmonella enterica subsp. enterica serovars Javiana, Montevideo and Schwarzengrund strains and their respective isogenic cdtB mutants was determined in human intestinal epithelial Henle-407 cells by assessment of cell cycle progression of infected cells using fluorescence-activated cell sorting (FACS). Two-way analysis of variance (ANOVA) was used to determine whether cdtB deletion had a significant (p < 0.05) effect on the percentage of Henle-407 cells at each stage of the cell cycle. RESULTS: Here we show that a CdtB-islet encoding the cytolethal distending toxin B (CdtB), pertussis-like toxin A (PltA), and pertussis-like toxin B (PltB) is present in a dozen NTS serovars and that these proteins have a high level of sequence conservation and each form monophyletic clades with corresponding Salmonella Typhi genes. Human epithelial Henle-407 cells infected with three representative CdtB-encoding NTS serovars displayed G2/M phase cell cycle arrest that was absent in cells infected with corresponding isogenic cdtB null mutants (p < 0.0001 for the factor ∆cdtB deletion). CONCLUSION: Our results show that CdtB encoded by NTS serovars has a genomic organization, amino acid sequence conservation and biological activity similar to the TT, and thus, may contribute to disease pathogenesis.

18.
BMC Genomics ; 15: 427, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24898914

RESUMO

BACKGROUND: Within the last decade, Salmonella enterica subsp. enterica serovar Cerro (S. Cerro) has become one of the most common serovars isolated from cattle and dairy farm environments in the northeastern US. The fact that this serovar is commonly isolated from subclinically infected cattle and is rarely associated with human disease, despite its frequent isolation from cattle, has led to the hypothesis that this emerging serovar may be characterized by reduced virulence. We applied comparative and population genomic approaches to (i) characterize the evolution of this recently emerged serovar and to (ii) gain a better understanding of genomic features that could explain some of the unique epidemiological features associated with this serovar. RESULTS: In addition to generating a de novo draft genome for one Salmonella Cerro strain, we also generated whole genome sequence data for 26 additional S. Cerro isolates, including 16 from cattle operations in New York (NY) state, 2 from human clinical cases from NY in 2008, and 8 from diverse animal sources (7 from Washington state and 1 from Florida). All isolates sequenced in this study represent sequence type ST367. Population genomic analysis showed that isolates from the NY cattle operations form a well-supported clade within S. Cerro ST367 (designated here "NY bovine clade"), distinct from isolates from Washington state, Florida and the human clinical cases. A molecular clock analysis indicates that the most recent common ancestor of the NY bovine clade dates back to 1998, supporting the recent emergence of this clone.Comparative genomic analyses revealed several relevant genomic features of S. Cerro ST367, that may be responsible for reduced virulence of S. Cerro, including an insertion creating a premature stop codon in sopA. In addition, patterns of gene deletion in S. Cerro ST367 further support adaptation of this clone to a unique ecological or host related niche. CONCLUSIONS: Our results indicate that the increase in prevalence of S. Cerro ST367 is caused by a highly clonal subpopulation and that S. Cerro ST367 is characterized by unique genomic deletions that may indicate adaptation to specific ecological niches and possibly reduced virulence in some hosts.


Assuntos
Doenças dos Bovinos/microbiologia , Infecções por Salmonella/microbiologia , Salmonella/classificação , Salmonella/genética , Adaptação Biológica , Animais , Sequência de Bases , Bovinos , Evolução Molecular , Genoma Bacteriano , Humanos , Dados de Sequência Molecular , Filogenia , Filogeografia , Salmonella/isolamento & purificação , Estados Unidos , Virulência
19.
Vector Borne Zoonotic Dis ; 14(7): 496-502, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24902121

RESUMO

Nosocomial salmonellosis continues to pose an important threat to veterinary medical teaching hospitals. The objectives of this study were to describe an outbreak of salmonellosis caused by Salmonella enterica serovar Oranienburg within our hospital and to highlight its unique features, which can be used to help mitigate or prevent nosocomial outbreaks in the future. We retrospectively analyzed data from patients that were fecal culture-positive for Salmonella Oranienburg between January 1, 2006, and June 1, 2011, including historical, clinical, and pulsed-field gel electrophoresis (PFGE) data. Salmonella Oranienburg was identified in 20 horses, five alpacas, and three cows during this time frame, with dates of admission spanning the period from August, 2006, through January, 2008. We consider most of these patients to have become infected through either nosocomial or on-farm transmission, as evidenced by molecular subtyping results and supportive epidemiologic data. Interpretation of PFGE results in this outbreak was challenging because of the identification of several closely related Salmonella Oranienburg subtypes. Furthermore, a high percentage of cases were fecal culture-positive for Salmonella Oranienburg within 24 h of admission. These patients initially appeared to represent new introductions of Salmonella into the hospital, but closer inspection of their medical records revealed epidemiologic links to the hospital following the index case. Cessation of this outbreak was observed following efforts to further heighten biosecurity efforts, with no known cases or positive environmental samples after January, 2008. This study demonstrates that a Salmonella-positive culture result within 24 h of admission does not exclude the hospital as the source of infection, and it underscores the important role played by veterinary medical teaching hospitals as nodes of Salmonella infection that can promote transmission outside of the hospital setting.


Assuntos
Camelídeos Americanos/microbiologia , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Doenças dos Cavalos/epidemiologia , Salmonelose Animal/epidemiologia , Salmonella enterica/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/transmissão , Infecção Hospitalar/veterinária , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Campo Pulsado/veterinária , Fezes/microbiologia , Feminino , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/transmissão , Cavalos , Hospitais Veterinários , New York/epidemiologia , Estudos Retrospectivos , Salmonelose Animal/microbiologia , Salmonelose Animal/transmissão , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Sorogrupo
20.
PLoS One ; 7(7): e41247, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911766

RESUMO

The genetic diversity represented by >2,500 different Salmonella serovars provides a yet largely uncharacterized reservoir of mobile elements that can contribute to the frequent emergence of new pathogenic strains of this important zoonotic pathogen. Currently, our understanding of Salmonella mobile elements is skewed by the fact that most studies have focused on highly virulent or common serovars. To gain a more global picture of mobile elements in Salmonella, we used prediction algorithms to screen for mobile elements in 16 sequenced Salmonella genomes representing serovars for which no prior genome scale mobile element data were available. From these results, selected mobile elements underwent further analyses in the form of validation studies, comparative analyses, and PCR-based population screens. Through this analysis we identified a novel plasmid that has two cointegrated replicons (IncI1-IncFIB); this plasmid type was found in four genomes representing different Salmonella serovars and contained a virulence gene array that had not been previously identified. A Salmonella Montevideo isolate contained an IncHI and an IncN2 plasmid, which both encoded antimicrobial resistance genes. We also identified two novel genomic islands (SGI2 and SGI3), and 42 prophages with mosaic architecture, seven of them harboring known virulence genes. Finally, we identified a novel integrative conjugative element (ICE) encoding a type IVb pilus operon in three non-typhoidal Salmonella serovars. Our analyses not only identified a considerable number of mobile elements that have not been previously reported in Salmonella, but also found evidence that these elements facilitate transfer of genes that were previously thought to be limited in their distribution among Salmonella serovars. The abundance of mobile elements encoding pathogenic properties may facilitate the emergence of strains with novel combinations of pathogenic traits.


Assuntos
Transferência Genética Horizontal , Genes Bacterianos , Sequências Repetitivas Dispersas , Salmonella/genética , Animais , Farmacorresistência Bacteriana/genética , Ordem dos Genes , Genoma Viral , Ilhas Genômicas , Óperon , Filogenia , Plasmídeos/genética , Prófagos/genética , Salmonella/classificação , Salmonella/isolamento & purificação , Salmonella/patogenicidade , Infecções por Salmonella/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA