Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(5): e0008324, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38647296

RESUMO

Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.


Assuntos
Neve , Neve/virologia , Neve/microbiologia , Colúmbia Britânica , Bactérias/genética , Bactérias/virologia , Bactérias/isolamento & purificação , Eutrofização , Genoma Viral/genética , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Rodófitas/virologia , Vírus/genética , Vírus/isolamento & purificação , Vírus/classificação
2.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345223

RESUMO

Bacteriophages (phages) are viruses that infect bacteria with species- and strain-level specificity and are the most abundant biological entities across all known ecosystems. Within bacterial communities, such as those found in the gut microbiota, phages are implicated in regulating microbiota population dynamics and driving bacterial evolution. There has been renewed interest in phage research in the last decade, in part due to the host-specific killing capabilities of lytic phages, which offer a promising tool to counter the increasing threat of antimicrobial resistant bacteria. Furthermore, recent studies demonstrating that phages adhere to intestinal mucus suggest they may have a protective role in preventing bacterial invasion into the underlying epithelium. Importantly, like bacterial microbiomes, disrupted phageomes have been associated with worsened outcomes in diseases such as inflammatory bowel disease. Previous studies have demonstrated that phages can modulate the microbiome of animals and humans through fecal filtrate transplants, benefiting the host's health. With this recent wave of research comes the necessity to establish and standardize protocols for studying phages in the context of the gut microbiome. This protocol provides a set of procedures to study isolated T4 phages and their bacterial host, Escherichia coli, in the context of the murine gastrointestinal tract. The methods described here outline how to start from a phage lysate, administer it to mice and assess effects on bacterial host and phage levels. This protocol can be modified and applied to other phage-bacterial pairs and provides a starting point for studying host-phage dynamics in vivo.


Assuntos
Bacteriófagos , Microbiota , Humanos , Camundongos , Animais , Bacteriófagos/fisiologia , Bacteriófago T4 , Escherichia coli , Trato Gastrointestinal/microbiologia , Intestinos , Bactérias
3.
Viruses ; 15(8)2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37632008

RESUMO

Achromobacter species colonization of Cystic Fibrosis respiratory airways is an increasing concern. Two adult patients with Cystic Fibrosis colonized by Achromobacter xylosoxidans CF418 or Achromobacter ruhlandii CF116 experienced fatal exacerbations. Achromobacter spp. are naturally resistant to several antibiotics. Therefore, phages could be valuable as therapeutics for the control of Achromobacter. In this study, thirteen lytic phages were isolated and characterized at the morphological and genomic levels for potential future use in phage therapy. They are presented here as the Achromobacter Kumeyaay phage collection. Six distinct Achromobacter phage genome clusters were identified based on a comprehensive phylogenetic analysis of the Kumeyaay collection as well as the publicly available Achromobacter phages. The infectivity of all phages in the Kumeyaay collection was tested in 23 Achromobacter clinical isolates; 78% of these isolates were lysed by at least one phage. A cryptic prophage was induced in Achromobacter xylosoxidans CF418 when infected with some of the lytic phages. This prophage genome was characterized and is presented as Achromobacter phage CF418-P1. Prophage induction during lytic phage preparation for therapy interventions require further exploration. Large-scale production of phages and removal of endotoxins using an octanol-based procedure resulted in a phage concentrate of 1 × 109 plaque-forming units per milliliter with an endotoxin concentration of 65 endotoxin units per milliliter, which is below the Food and Drugs Administration recommended maximum threshold for human administration. This study provides a comprehensive framework for the isolation, bioinformatic characterization, and safe production of phages to kill Achromobacter spp. in order to potentially manage Cystic Fibrosis (CF) pulmonary infections.


Assuntos
Achromobacter denitrificans , Achromobacter , Bacteriófagos , Fibrose Cística , Adulto , Humanos , Bacteriófagos/genética , Fibrose Cística/terapia , Filogenia , Achromobacter/genética , Achromobacter denitrificans/genética , Prófagos , Endotoxinas
4.
BMC Biol ; 21(1): 77, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038111

RESUMO

BACKGROUND: Predation pressure and herbivory exert cascading effects on coral reef health and stability. However, the extent of these cascading effects can vary considerably across space and time. This variability is likely a result of the complex interactions between coral reefs' biotic and abiotic dimensions. A major biological component that has been poorly integrated into the reefs' trophic studies is the microbial community, despite its role in coral death and bleaching susceptibility. Viruses that infect bacteria can control microbial densities and may positively affect coral health by controlling microbialization. We hypothesize that viral predation of bacteria has analogous effects to the top-down pressure of macroorganisms on the trophic structure and reef health. RESULTS: Here, we investigated the relationships between live coral cover and viruses, bacteria, benthic algae, fish biomass, and water chemistry in 110 reefs spanning inhabited and uninhabited islands and atolls across the Pacific Ocean. Statistical learning showed that the abundance of turf algae, viruses, and bacteria, in that order, were the variables best predicting the variance in coral cover. While fish biomass was not a strong predictor of coral cover, the relationship between fish and corals became apparent when analyzed in the context of viral predation: high coral cover (> 50%) occurred on reefs with a combination of high predator fish biomass (sum of sharks and piscivores > 200 g m-2) and high virus-to-bacteria ratios (> 10), an indicator of viral predation pressure. However, these relationships were non-linear, with reefs at the higher and lower ends of the coral cover continuum displaying a narrow combination of abiotic and biotic variables, while reefs at intermediate coral cover showed a wider range of parameter combinations. CONCLUSIONS: The results presented here support the hypothesis that viral predation of bacteria is associated with high coral cover and, thus, coral health and stability. We propose that combined predation pressures from fishes and viruses control energy fluxes, inhibiting the detrimental accumulation of ecosystem energy in the microbial food web.


Assuntos
Antozoários , Bactérias , Recifes de Corais , Peixes , Cadeia Alimentar , Comportamento Predatório , Antozoários/microbiologia , Antozoários/virologia , Animais , Peixes/fisiologia , Oceano Pacífico , Biomassa , Ilhas , Bactérias/virologia , Água do Mar/química , Atividades Humanas , Estatísticas não Paramétricas
5.
Entropy (Basel) ; 25(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36981427

RESUMO

The dissipation in an irreversible step process is reduced when the number of steps is increased in any refinement of the steps in the process. This is a consequence of the ladder theorem, which states that, for any irreversible process proceeding by a sequence of relaxations, dividing any relaxation step into two will result in a new sequence that is more efficient than the original one. This results in a more-steps-the-better rule, even when the new sequence of steps is not reoptimized. This superiority of many steps is well established empirically in, e.g., insulation and separation applications. In particular, the fact that the division of any step into two steps improves the overall efficiency has interesting implications for biological evolution and emphasizes thermodynamic length as a central measure for dissipation.

6.
J Vis Exp ; (191)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688558

RESUMO

Coral reefs thrive and provide maximal ecosystem services when they support a multi-level trophic structure and grow in favorable water quality conditions that include high light levels, rapid water flow, and low nutrient levels. Poor water quality and other anthropogenic stressors have caused coral mortality in recent decades, leading to trophic downgrading and the loss of biological complexity on many reefs. Solutions to reverse the causes of trophic downgrading remain elusive, in part because efforts to restore reefs are often attempted in the same diminished conditions that caused coral mortality in the first place. Coral Arks, positively buoyant, midwater structures, are designed to provide improved water quality conditions and supportive cryptic biodiversity for translocated and naturally recruited corals to assemble healthy reef mesocosms for use as long-term research platforms. Autonomous Reef Monitoring Structures (ARMS), passive settlement devices, are used to translocate the cryptic reef biodiversity to the Coral Arks, thereby providing a "boost" to natural recruitment and contributing ecological support to the coral health. We modeled and experimentally tested two designs of Arks to evaluate the drag characteristics of the structures and assess their long-term stability in the midwater based on their response to hydrodynamic forces. We then installed two designs of Arks structures at two Caribbean reef sites and measured several water quality metrics associated with the Arks environment over time. At deployment and 6 months after, the Coral Arks displayed enhanced metrics of reef function, including higher flow, light, and dissolved oxygen, higher survival of translocated corals, and reduced sedimentation and microbialization relative to nearby seafloor sites at the same depth. This method provides researchers with an adaptable, long-term platform for building reef communities where local water quality conditions can be adjusted by altering deployment parameters such as the depth and site.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Antozoários/fisiologia , Índias Ocidentais , Qualidade da Água
7.
Funct Ecol ; 36(8): 2104-2118, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247100

RESUMO

The increased release of dissolved organic matter (DOM) by algae has been associated with the fast but inefficient growth of opportunistic microbial pathogens and the ongoing degradation of coral reefs. Turf algae (consortia of microalgae and macroalgae commonly including cyanobacteria) dominate benthic communities on many reefs worldwide. Opposite to other reef algae that predominantly release DOM during the day, turf algae containing cyanobacteria may additionally release large amounts of DOM at night. However, this night-DOM release and its potential contribution to the microbialization of reefs remains to be investigated.We first tested the occurrence of hypoxic conditions at the turf algae-water interface, as a lack of oxygen will facilitate the production and release of fermentation intermediates as night-time DOM. Second, the dissolved organic carbon (DOC) release by turf algae was quantified during day time and nighttime, and the quality of day and night exudates as food for bacterioplankton was tested. Finally, DOC release rates of turf algae were combined with estimates of DOC release based on benthic community composition in 1973 and 2013 to explore how changes in benthic community composition affected the contribution of night-DOC to the reef-wide DOC production.A rapid shift from supersaturated to hypoxic conditions at the turf algae-water interface occurred immediately after the onset of darkness, resulting in night-DOC release rates similar to those during daytime. Bioassays revealed major differences in the quality between day and night exudates: Night-DOC was utilized by bacterioplankton two times faster than day-DOC, but yielded a four times lower growth efficiency. Changes in benthic community composition were estimated to have resulted in a doubling of DOC release since 1973, due to an increasing abundance of benthic cyanobacterial mats (BCMs), with night-DOC release by BCMs and turf algae accounting for >50% of the total release over a diurnal cycle.Night-DOC released by BCMs and turf algae is likely an important driver in the microbialization of reefs by stimulating microbial respiration at the expense of energy and nutrient transfer to higher trophic levels via the microbial loop, thereby threatening the productivity and biodiversity of these unique ecosystems. Read the free Plain Language Summary for this article on the Journal blog.


El incremento de la liberación de materia orgánica disuelta (MOD) por parte de las algas se ha asociado con el crecimiento rápido pero ineficaz de microorganismos patógenos oportunistas y la continua degradación de los arrecifes coralinos. Los céspedes algales (consorcios de micro y macroalgas que suelen incluir cianobacterias) dominan las comunidades bentónicas de muchos arrecifes de todo el mundo. A diferencia de otras algas de arrecife que liberan predominantemente MOD durante el día, los céspedes algales que contienen cianobacterias pueden liberar adicionalmente grandes cantidades de MOD durante la noche. Sin embargo, esta liberación nocturna de MOD y su potencial contribución a la microbialización de los arrecifes aún falta por ser investigada.En primer lugar, investigamos la existencia de condiciones de hipoxia en la interfase entre los céspedes algales y el agua, ya que la falta de oxígeno facilitaría la producción y liberación de productos intermedios de fermentación como MOD nocturna. En segundo lugar, cuantificamos la liberación de carbono orgánico disuelto (COD) por los céspedes algales durante el día y la noche, y se comprobó la calidad de los exudados diurnos y nocturnos como alimento para el bacterioplancton. Finalmente, las tasas de liberación de MOD de los céspedes algales se combinaron con las estimaciones de liberación de COD basadas en la composición de la comunidad bentónica en 1973 y 2013 para explorar cómo los cambios en la composición de la comunidad bentónica afectaron a la contribución de MOD nocturna y a su vez a la producción de COD en todo el arrecife.En ausencia de luz, se produjo inmediatamente un cambio rápido de condiciones sobresaturadas a condiciones hipóxicas en la interfaz entre los céspedes algales y el agua, lo que dio lugar a tasas de liberación de COD nocturnas similares a las diurnas. Los bioensayos revelaron importantes diferencias en la calidad de los exudados diurnos y nocturnos: el bacterioplancton utilizó el COD nocturno dos veces más rápido que el COD diurno, pero su eficiencia de crecimiento fue cuatro veces menor. Se estimó que los cambios en la composición de la comunidad bentónica han dado lugar a una duplicación de la liberación de MOD desde 1973 debido a la creciente abundancia de tapetes de cianobacterias bentónicas, y que la liberación nocturna de COD por parte de estos tapetes y los céspedes algales representa >50% de la liberación total durante un ciclo diurno.El COD nocturno que es liberado por los tapetes de cianobacterias bentónicas y los céspedes algales es probablemente un importante promotor de la microbialización de los arrecifes al estimular la respiración microbiana a expensas de la transferencia de energía y nutrientes a los niveles tróficos superiores a través del bucle microbiano y, por tanto, amenaza la productividad y la biodiversidad de estos ecosistemas únicos.

8.
Environ Microbiome ; 17(1): 6, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130971

RESUMO

BACKGROUND: Viruses are the most abundant biological entities on the planet and drive biogeochemical cycling on a global scale. Our understanding of biogeography of soil viruses and their ecological functions lags significantly behind that of Bacteria and Fungi. Here, a viromic approach was used to investigate the distribution and ecological functions of viruses from 19 soils across China. RESULTS: Soil viral community were clustered more significantly by geographical location than type of soil (agricultural and natural). Three clusters of viral communities were identified from North, Southeast and Southwest regions; these clusters differentiated using taxonomic composition and were mainly driven by geographic location and climate factors. A total of 972 viral populations (vOTUs) were detected spanning 23 viral families from the 19 viromes. Phylogenetic analyses of the phoH gene showed a remarkable diversity and the distribution of viral phoH genes was more dependent on the environment. Notably, five proteins involved in phosphorus (P) metabolism-related nucleotide synthesis functions, including dUTPase, MazG, PhoH, Thymidylate synthase complementing protein (Thy1), and Ribonucleoside reductase (RNR), were mainly identified in agricultural soils. CONCLUSIONS: The present work revealed that soil viral communities were distributed across China according to geographical location and climate factors. In addition, P metabolism genes encoded by these viruses probably drive the synthesis of nucleotides for their own genomes inside bacterial hosts, thereby affecting P cycling in the soil ecosystems.

9.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769481

RESUMO

Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.


Assuntos
Fibrose Cística/microbiologia , Metagenômica/métodos , Microbiota , Adulto , Antibacterianos/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/terapia , Genômica/métodos , Humanos , Pulmão/microbiologia , Masculino , Metabolômica/métodos , Microbiota/genética , Testes de Função Respiratória , Insuficiência Respiratória/genética , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/microbiologia , Insuficiência Respiratória/terapia , Escarro/microbiologia
10.
PeerJ ; 9: e11213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249480

RESUMO

Reef-building corals are ecosystem engineers that compete with other benthic organisms for space and resources. Corals harvest energy through their surface by photosynthesis and heterotrophic feeding, and they divert part of this energy to defend their outer colony perimeter against competitors. Here, we hypothesized that corals with a larger space-filling surface and smaller perimeters increase energy gain while reducing the exposure to competitors. This predicted an association between these two geometric properties of corals and the competitive outcome against other benthic organisms. To test the prediction, fifty coral colonies from the Caribbean island of Curaçao were rendered using digital 3D and 2D reconstructions. The surface areas, perimeters, box-counting dimensions (as a proxy of surface and perimeter space-filling), and other geometric properties were extracted and analyzed with respect to the percentage of the perimeter losing or winning against competitors based on the coral tissue apparent growth or damage. The increase in surface space-filling dimension was the only significant single indicator of coral winning outcomes, but the combination of surface space-filling dimension with perimeter length increased the statistical prediction of coral competition outcomes. Corals with larger surface space-filling dimensions (Ds > 2) and smaller perimeters displayed more winning outcomes, confirming the initial hypothesis. We propose that the space-filling property of coral surfaces complemented with other proxies of coral competitiveness, such as life history traits, will provide a more accurate quantitative characterization of coral competition outcomes on coral reefs. This framework also applies to other organisms or ecological systems that rely on complex surfaces to obtain energy for competition.

11.
Environ Microbiol ; 23(8): 4098-4111, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34121301

RESUMO

Lysogens are common at high bacterial densities, an observation that contrasts with the prevailing view of lysogeny as a low-density refugium strategy. Here, we review the mechanisms regulating lysogeny in complex communities and show that the additive effects of coinfections, diversity and host energic status yield a bimodal distribution of lysogeny as a function of microbial densities. At high cell densities (above 106 cells ml-1 or g-1 ) and low diversity, coinfections by two or more phages are frequent and excess energy availability stimulates inefficient metabolism. Both mechanisms favour phage integration and characterize the Piggyback-the-Winner dynamic. At low densities (below 105 cells ml-1 or g-1 ), starvation represses lytic genes and extends the time window for lysogenic commitment, resulting in a higher frequency of coinfections that cause integration. This pattern follows the predictions of the refugium hypothesis. At intermediary densities (between 105 and 106 cells ml-1 or g-1 ), encounter rates and efficient energy metabolism favour lysis. This may involve Kill-the-Winner lytic dynamics and induction. Based on these three regimes, we propose a framework wherein phage integration occurs more frequently at both ends of the host density gradient, with distinct underlying molecular mechanisms (coinfections and host metabolism) dominating at each extreme.


Assuntos
Bacteriófagos , Microbiota , Bactérias/genética , Bacteriófagos/genética , Lisogenia
12.
J Vis Exp ; (170)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33900300

RESUMO

To control community transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the 2020 global pandemic, most countries implemented strategies based on direct human testing, face covering, and surface disinfection. Under the assumption that the main route of transmission includes aerosols and respiratory droplets, efforts to detect SARS-CoV-2 in fomites have focused on locations suspected of high prevalence (e.g., hospital wards, cruise ships, and mass transportation systems). To investigate the presence of SARS-CoV-2 on surfaces in the urban environment that are rarely cleaned and seldomly disinfected, 350 citizens were enlisted from the greater San Diego County. In total, these citizen scientists collected 4,080 samples. An online platform was developed to monitor sampling kit delivery and pickup, as well as to collect sample data. The sampling kits were mostly built from supplies available in pandemic-stressed stores. Samples were processed using reagents that were easy to access despite the recurrent supply shortage. The methods used were highly sensitive and resistant to inhibitors that are commonly present in environmental samples. The proposed experimental design and processing methods were successful at engaging numerous citizen scientists who effectively gathered samples from diverse surface areas. The workflow and methods described here are relevant to survey the urban environment for other viruses, which are of public health concern and pose a threat for future pandemics.


Assuntos
Microbiologia Ambiental , SARS-CoV-2/isolamento & purificação , Aerossóis , Desinfecção , Humanos , Manejo de Espécimes
13.
Viruses ; 14(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35062223

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that causes COVID-19. Being aware of the presence of the virus on different types of surfaces and in different environments, and having a protocol for its detection, is important to understand the dynamics of the virus and its shedding patterns. In Ecuador, the detection of viral RNA in urban environmental samples has not been a priority. The present study analyzed samples from two densely populated neighborhoods and one public transportation system in Quito, Ecuador. Viral RNA presence was assessed using RT-LAMP. Twenty-eight out of 300 surfaces tested positive for SARS-CoV-2 RNA (9.33%). Frequently touched surfaces, especially in indoor spaces and on public transportation, were most likely to be positive for viral RNA. Positivity rate association for the two neighborhoods and for the surface type was not found. This study found viral RNA presence on urban surfaces; this information provides an insight into viral dissemination dynamics. Monitoring environmental SARS-CoV-2 could support the public health prevention strategies in Quito, Ecuador.


Assuntos
Microbiologia Ambiental , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Meios de Transporte , COVID-19/transmissão , Cidades , Equador , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , SARS-CoV-2/genética
14.
mSystems ; 5(6)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33127739

RESUMO

Due to the COVID-19 pandemic and potential public health implications, we are publishing this peer-reviewed manuscript in its accepted form. The final, copyedited version of the paper will be available at a later date. Although SARS-CoV-2 is primarily transmitted by respiratory droplets and aerosols, transmission by fomites remains plausible. During Halloween, a major event for children in numerous countries, SARS-CoV-2 transmission risk via candy fomites worries many parents. To address this concern, we enrolled 10 recently diagnosed asymptomatic or mildly/moderately symptomatic COVID-19 patients to handle typical Halloween candy (pieces individually wrapped) under three conditions: normal handling with unwashed hands, deliberate coughing and extensive touching, and normal handling following handwashing. We then used a factorial design to subject the candies to two post-handling treatments: no washing (untreated) and household dishwashing detergent. We measured SARS-CoV-2 load by RT-qPCR and LAMP. From the candies not washed post-handling, we detected SARS-CoV-2 on 60% of candies that were deliberately coughed on, 60% of candies normally handled with unwashed hands, but only 10% of candies handled after hand washing. We found that treating candy with dishwashing detergent reduced SARS-CoV-2 load by 62.1% in comparison to untreated candy. Taken together, these results suggest that although the risk of transmission of SARS-CoV-2 by fomites is low even from known COVID-19 patients, viral RNA load can be reduced to near zero by the combination of handwashing by the infected patient and ≥1 minute detergent treatment after collection. We also found that the inexpensive and fast LAMP protocol was more than 80% concordant with RT-qPCR.IMPORTANCE The COVID-19 pandemic is leading to important tradeoffs between risk of SARS-CoV-2 transmission and mental health due to deprivation from normal activities, with these impacts being especially profound in children. Due to the ongoing pandemic, Halloween activities will be curtailed as a result of the concern that candy from strangers might act as fomites. Here we demonstrate that these risks can be mitigated by ensuring that prior to handling candy, the candy giver washes their hands, and by washing collected candy with household dishwashing detergent. Even in the most extreme case, with candy deliberately coughed on by known COVID-19 patients, viral load was reduced dramatically after washing with household detergent. We conclude that with reasonable precautions, even if followed only by either the candy giver or the candy recipient, the risk of viral transmission by this route is very low.

15.
mBio ; 11(4)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694137

RESUMO

The increase in prevalence and severity of coral disease outbreaks produced by Vibrio pathogens, and related to global warming, has seriously impacted reef-building corals throughout the oceans. The coral Oculina patagonica has been used as a model system to study coral bleaching produced by Vibrio infection. Previous data demonstrated that when two coral pathogens (Vibrio coralliilyticus and Vibrio mediterranei) simultaneously infected the coral O. patagonica, their pathogenicity was greater than when each bacterium was infected separately. Here, to understand the mechanisms underlying this synergistic effect, transcriptomic analyses of monocultures and cocultures as well as experimental infection experiments were performed. Our results revealed that the interaction between the two vibrios under culture conditions overexpressed virulence factor genes (e.g., those encoding siderophores, the type VI secretion system, and toxins, among others). Moreover, under these conditions, vibrios were also more likely to form biofilms or become motile through induction of lateral flagella. All these changes that occur as a physiological response to the presence of a competing species could favor the colonization of the host when they are present in a mixed population. Additionally, during coral experimental infections, we showed that exposure of corals to molecules released during V. coralliilyticus and V. mediterranei coculture induced changes in the coral microbiome that favored damage to coral tissue and increased the production of lyso-platelet activating factor. Therefore, we propose that competition sensing, defined as the physiological response to detection of harm or to the presence of a competing Vibrio species, enhances the ability of Vibrio coral pathogens to invade their host and cause tissue necrosis.IMPORTANCEVibrio coralliilyticus and Vibrio mediterranei are important coral pathogens capable of inducing serious coral damage, which increases severely when they infect the host simultaneously. This has consequences related to the dispersion of these pathogens among different locations that could enhance deleterious effects on coral reefs. However, the mechanisms underlying this synergistic interaction are unknown. The work described here provides a new perspective on the complex interactions among these two Vibrio coral pathogens, suggesting that coral infection could be a collateral effect of interspecific competition. Major implications of this work are that (i) Vibrio virulence mechanisms are activated in the absence of the host as a response to interspecific competition and (ii) release of molecules by Vibrio coral pathogens produces changes in the coral microbiome that favor the pathogenic potential of the entire Vibrio community. Thus, our results highlight that social cues and competition sensing are crucial determinants of development of coral diseases.


Assuntos
Antozoários/microbiologia , Interações entre Hospedeiro e Microrganismos , Interações Microbianas , Vibrio/genética , Vibrio/patogenicidade , Animais , Recifes de Corais , Perfilação da Expressão Gênica , Aquecimento Global , Água do Mar/microbiologia , Temperatura , Vibrio/classificação , Vibrioses/genética , Vibrioses/microbiologia , Virulência
16.
mSystems ; 5(4)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723799

RESUMO

Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS-a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome.IMPORTANCE To engage with host cells, diverse pathogenic bacteria produce syringe-like structures called contractile injection systems (CIS). CIS are evolutionarily related to the contractile tails of bacteriophages and are specialized to puncture membranes, often delivering effectors to target cells. Although CIS are key for pathogens to cause disease, paradoxically, similar injection systems have been identified within healthy human microbiome bacteria. Here, we show that gene clusters encoding a predicted CIS, which we term Bacteroidales injection systems (BIS), are present in the microbiomes of nearly all adult humans tested from Western countries. BIS genes are enriched within human gut microbiomes and are expressed both in vitro and in vivo Further, a greater abundance of BIS genes is present within healthy gut microbiomes than in those humans with with inflammatory bowel disease (IBD). Our discovery provides a potentially distinct means by which our microbiome interacts with the human host or its microbiome.

17.
Proc Natl Acad Sci U S A ; 117(24): 13588-13595, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482859

RESUMO

Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.


Assuntos
Antozoários/metabolismo , Clorófitas/metabolismo , Animais , Antozoários/química , Antozoários/microbiologia , Antozoários/parasitologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Clorófitas/química , Recifes de Corais , Ecossistema , Metagenômica , Microbiota
18.
Ecol Evol ; 10(7): 3413-3423, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273998

RESUMO

AIM: Identification of the processes that generate and maintain species diversity within the same region can provide insight into biogeographic patterns at broader spatiotemporal scales. Hawkfishes in the genus Paracirrhites are a unique taxon to explore with respect to niche differentiation, exhibiting diagnostic differences in coloration, and an apparent center of distribution outside of the Indo-Malay-Philippine (IMP) biodiversity hotspot for coral reef fishes. Our aim is to use next-generation sequencing methods to leverage samples of a taxon at their center of maximum diversity to explore phylogenetic relationships and a possible mechanism of coexistence. LOCATION: Flint Island, Southern Line Islands, Republic of Kiribati. METHODS: A comprehensive review of museum records, the primary literature, and unpublished field survey records was undertaken to determine ranges for four "arc-eye" hawkfish species in the Paracirrhites species complex and a potential hybrid. Fish from four Paracirrhites species were collected from Flint Island in the Southern Line Islands, Republic of Kiribati. Hindgut contents were sequenced, and subsequent metagenomic analyses were used to assess the phylogenetic relatedness of the host fish, the microbiome community structure, and prey remains for each species. RESULTS: Phylogenetic analyses conducted with recovered mitochondrial genomes revealed clustering of P. bicolor with P. arcatus and P. xanthus with P. nisus, which were unexpected on the basis of previous morphological work in this species complex. Differences in taxonomic composition of gut microbial communities and presumed prey remains indicate likely separation of foraging niches. MAIN CONCLUSIONS: Our findings point toward previously unidentified relationships in this cryptic species complex at its proposed center of distribution. The three species endemic to the Polynesian province (P. nisus, P. xanthus, and P. bicolor) cluster separately from the more broadly distributed P. arcatus on the basis of relative abundance of metazoan sequences in the gut (presumed prey remains). Discordance between gut microbial communities and phylogeny of the host fish further reinforce the hypothesis of niche separation.

19.
Virology ; 543: 7-12, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32056848

RESUMO

An essential step in the morphogenesis of tailed bacteriophages is the joining of heads and tails to form infectious virions. Our understanding of the maturation of complete virus particles remains incomplete. Through an unknown mechanism, phage T4 gene product 4 (gp4) plays an essential role in the head-tail joining step of T4-like phages. Alignment of T4 gp4 homologs identified a type II restriction endonuclease motif. Purified gp4 from both T4 and a marine T4-like bacteriophage, YC, have non-specific nuclease activity in vitro. Mutation of a single conserved amino acid residue in the endonuclease fold of T4 and YC gp4 abrogates nuclease activity. When expressed in trans, the wild type T4 gp4, but neither the mutated T4 protein nor the YC homolog, rescues a T4 gene 4 amber mutant phage. Thus the nuclease activity appears essential for morphogenesis, potentially by cleaving packaged DNA to enable the joining of heads to tails.


Assuntos
Bacteriófago T4/enzimologia , Proteínas do Capsídeo/metabolismo , Capsídeo/enzimologia , Endonucleases/genética , Vírion/enzimologia , Montagem de Vírus/genética , Bacteriófago T4/genética , Bacteriófago T4/fisiologia , Bacteriófago T4/ultraestrutura , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Códon sem Sentido , Endonucleases/química , Endonucleases/metabolismo , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Morfogênese , Vírion/metabolismo , Vírion/ultraestrutura
20.
BMC Genomics ; 21(1): 126, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024463

RESUMO

BACKGROUND: Bacteriophages encode genes that modify bacterial functions during infection. The acquisition of phage-encoded virulence genes is a major mechanism for the rise of bacterial pathogens. In coral reefs, high bacterial density and lysogeny has been proposed to exacerbate reef decline through the transfer of phage-encoded virulence genes. However, the functions and distribution of these genes in phage virions on the reef remain unknown. RESULTS: Here, over 28,000 assembled viral genomes from the free viral community in Atlantic and Pacific Ocean coral reefs were queried against a curated database of virulence genes. The diversity of virulence genes encoded in the viral genomes was tested for relationships with host taxonomy and bacterial density in the environment. These analyses showed that bacterial density predicted the profile of virulence genes encoded by phages. The Shannon diversity of virulence-encoding phages was negatively related with bacterial density, leading to dominance of fewer genes at high bacterial abundances. A statistical learning analysis showed that reefs with high microbial density were enriched in viruses encoding genes enabling bacterial recognition and invasion of metazoan epithelium. Over 60% of phages could not have their hosts identified due to limitations of host prediction tools; for those which hosts were identified, host taxonomy was not an indicator of the presence of virulence genes. CONCLUSIONS: This study described bacterial virulence factors encoded in the genomes of bacteriophages at the community level. The results showed that the increase in microbial densities that occurs during coral reef degradation is associated with a change in the genomic repertoire of bacteriophages, specifically in the diversity and distribution of bacterial virulence genes. This suggests that phages are implicated in the rise of pathogens in disturbed marine ecosystems.


Assuntos
Bactérias/genética , Bacteriófagos/genética , Genes Bacterianos , Fatores de Virulência/genética , Bactérias/patogenicidade , Recifes de Corais , Ecossistema , Genoma Viral , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...