RESUMO
Temperature-dependent dynamic structure factors S(Q, ω) for liquid water have been calculated using a composite model, which is based on the decoupling approximation of the mean square displacement of the water molecules into diffusion and solid-like vibrational parts. The solid-like vibrational part Svib(Q, ω) is calculated with the phonon expansion method established in the framework of the incoherent Gaussian approximation. The diffusion part Sdiff(Q, ω) relies on the Egelstaff-Schofield translational diffusion model corrected for jump diffusions and rotational diffusions with the Singwi-Sjölander random model and Sears expansion, respectively. Systematics of the model parameters as a function of temperature were deduced from quasi-elastic neutron scattering data analysis reported in the literature and from molecular dynamics (MD) simulations relying on the TIP4P/2005f model. The resulting S(Q, ω) values are confronted by means of Monte Carlo simulations to inelastic neutron scattering data measured with IN4, IN5, and IN6 time-of-flight spectrometers of the Institut Laue-Langevin (ILL) (Grenoble, France). A modest range of temperatures (283-494 K) has been investigated with neutron wavelengths corresponding to incident neutron energies ranging from 0.57 to 67.6 meV. The neutron-weighted multiphonon spectra deduced from the ILL data indicate a slight overestimation by the MD simulations of the frequency shift and broadening of the librational band. The descriptive power of the composite model was suited for improving the comparison to experiments via Bayesian updating of prior model parameters inferred from MD simulations. The reported posterior temperature-dependent densities of state of hydrogen in H2O would represent valuable insights for studying the collective coupling interactions in the water molecule between the inter- and intramolecular degrees of freedom.
RESUMO
We report investigation of phonons and oxygen diffusion in Bi2O3 and (Bi0.7Y0.3)2O3. The phonon spectra have been measured in Bi2O3 at high temperatures up to 1083 K using inelastic neutron scattering. Ab initio calculations have been used to compute the individual contributions of the constituent atoms in Bi2O3 and (Bi0.7Y0.3)2O3 to the total phonon density of states. Our computed results indicate that as temperature is increased, there is a complete loss of sharp peak structure in the vibrational density of states. Ab initio molecular dynamics simulations show that even at 1000 K in δ-phase Bi2O3, Bi-Bi correlations remain ordered in the crystalline lattice while the correlations between O-O show liquid like disordered behavior. In the case of (Bi0.7Y0.3)2O3, the O-O correlations broadened at around 500 K indicating that oxygen conductivity is possible at such low temperatures in (Bi0.7Y0.3)2O3 although the conductivity is much less than that observed in the undoped high temperature δ-phase of Bi2O3. This result is consistent with the calculated diffusion coefficients of oxygen and observation by quasielastic neutron scattering experiments. Our ab initio molecular dynamics calculations predict that macroscopic diffusion is attainable in (Bi0.7Y0.3)2O3 at much lower temperatures, which is more suited for technological applications. Our studies elucidate the easy directions of diffusion in δ-Bi2O3 and (Bi0.7Y0.3)2O3.
RESUMO
We present here a quantitative analysis of the ground state and magnetic properties of Ce3Pt23Si11, based on a crystalline electric field description within the mean-field approximation. In this face-centered cubic compound, the point group symmetry at the Ce site is orthorhombic. One main difficulty in this low symmetry case is that the CEF potential for Ce3+ ions is determined by five independent parameters, while only two magnetic excitations are observed by inelastic neutron scattering. Moreover the anisotropy of the magnetic susceptibility of the Ce ion, that permits an independent determination of the second-order CEF parameters is hidden by the cubic symmetry of the compound. A specific procedure is developed for this purpose that combines genetic algorithms and more conventional optimization methods. A set of CEF parameters is found that best reproduces the different experimental observations in both the paramagnetic and ferromagnetic phases of Ce3Pt23Si11. The analysis accounts for two seemingly contradictory properties: a strong local anisotropy that aligns the moment along a fourfold axis and a rather weak anisotropy of the bulk magnetization with an easy threefold magnetization axis. Ce3Pt23Si11 is shown to be a model system where single site anisotropies compete within a crystal structure of overall high symmetry.
RESUMO
We investigate the detailed lattice dynamics of copper halides, CuX (X = Cl, Br, and I), using neutron inelastic scattering measurements and ab initio calculations aimed at a comparative study of their thermal expansion behavior. We identify the low energy phonons which soften with pressure and are responsible for negative thermal expansion. The eigenvector analysis of these modes suggests that softening of the transverse-acoustic modes would lead to NTE in these compounds. The calculations are in very good agreement with our measurements of phonon spectra and thermal expansion behavior as reported in the literature. Our calculations at high pressure further reveal that a large difference in negative thermal expansion behavior in these compounds is associated with the difference in the unit cell volume.
RESUMO
Sr_{2}CuTeO_{6} presents an opportunity for exploring low-dimensional magnetism on a square lattice of S=1/2 Cu^{2+} ions. We employ ab initio multireference configuration interaction calculations to unravel the Cu^{2+} electronic structure and to evaluate exchange interactions in Sr_{2}CuTeO_{6}. The latter results are validated by inelastic neutron scattering using linear spin-wave theory and series-expansion corrections for quantum effects to extract true coupling parameters. Using this methodology, which is quite general, we demonstrate that Sr_{2}CuTeO_{6} is an almost ideal realization of a nearest-neighbor Heisenberg antiferromagnet but with relatively weak coupling of 7.18(5) meV.
RESUMO
Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators.
RESUMO
In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K(-1).m(-1) at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag(+) ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag(+) oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid.
RESUMO
A comparison of periodic approximants and their quasicrystalline counterparts offers the opportunity to better understand the structure, physical properties and stabilizing mechanisms of these complex phases. We present a combined experimental and computational study of the lattice dynamics of the icosahedral quasicrystals i-ZnMgSc and i-ZnAgSc and compare these to the lattice dynamics of the cubic 1/1-approximant Zn6Sc. The two phases, quasicrystal and approximant, are built up from the same atomic clusters, which are packed either quasiperiodically or on a body centered cubic lattice, respectively. Using inelastic neutron scattering and atomic scale simulations, we show that the vibrational spectra of these three systems are very similar, however, they contain a clear signature of the increasing structural complexity from approximant to quasicrystal.
RESUMO
LuCuGaO4 has magnetic Cu(2+) and diamagnetic Ga(3+) ions distributed on a triangular bilayer and is suggested to undergo a spin glass transition at Tg â¼ 0.4 K. Using µSR (muon spin rotation) and neutron scattering measurements, we show that at low temperature the spins form a short range correlated state with spin fluctuations detectable over a wide range of timescales: at 0.05 K magnetic fluctuations can be detected in both the µSR time window and also extending beyond 7 meV in the inelastic neutron scattering response, indicating magnetic fluctuations spanning timescales between â¼10(-5) and â¼10(-10) s. The dynamical susceptibility scales according to the form χâ³(ω)T(α), with α = 1, throughout the measured temperature range (0.05-50 K). These effects are associated with quantum fluctuations and some degree of structural disorder in ostensibly quite different materials, including certain heavy fermion alloys, kagome spin liquids, quantum spin glasses, and valence bond glasses. We therefore suggest that LuCuGaO4 is an interesting model compound for the further examination of disorder and quantum magnetism.
Assuntos
Lutécio/química , Nanopartículas/química , Difração de Nêutrons/métodos , Teste de Materiais , Transição de Fase , Marcadores de Spin , TemperaturaRESUMO
The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.
RESUMO
A comparison of periodic approximants and their quasicrystalline counterparts offers the opportunity to better understand the structure, physical properties and stabilizing mechanisms of these complex phases. We present a combined experimental and molecular dynamics study of the lattice dynamics of the icosahedral quasicrystals i-ZnMgSc and i-ZnAgSc and compare it to recently published results obtained for the cubic 1/1-approximant Zn(6)Sc. Both phases, quasicrystal and approximant, are built up from large atomic clusters which contain a tetrahedral shell at the cluster centre and are packed either quasiperiodically or on a bcc lattice. Using quasielastic neutron scattering and atomic scale simulations, we show that in the quasicrystal the tetrahedra display a dynamics similar to that observed in the 1/1-approximant: the tetrahedra behave as a 'single molecule' and reorient dynamically on a timescale of the order of a few ps. The tetrahedra reorientation is accompanied by a large distortion of the surrounding cluster shells which provide a unique dynamical flexibility to the quasicrystal. However, whereas in the 1/1-approximant the tetrahedron reorientation is observed down to T(c) = 160 K, where a phase transition takes place, in the quasicrystal the tetrahedron dynamics is gradually freezing from 550 to 300 K, similarly to a glassy system.
RESUMO
The position and size of the energy gap in the phonon density of states of NaI single crystal have been investigated by inelastic neutron scattering in a wide range of temperatures from 10 to 700 K. The results reveal a pronounced temperature effect which effectively leads to closure of the phonon gap at temperatures in the range of 700-800 K. The results are discussed in the context of studies of possible intrinsic localized modes in the phonon gap of alkali halides.
RESUMO
Quantifying the molecular elasticity of DNA is fundamental to our understanding of its biological functions. Recently different groups, through experiments on tailored DNA samples and numerical models, have reported a range of stretching force constants (0.3 to 3 N/m). However, the most direct, microscopic measurement of DNA stiffness is obtained from the dispersion of its vibrations. A new neutron scattering spectrometer and aligned, wet spun samples have enabled such measurements, which provide the first data of collective excitations of DNA and yield a force constant of 83 N/m. Structural and dynamic order persists unchanged to within 15 K of the melting point of the sample, precluding the formation of bubbles. These findings are supported by large scale phonon and molecular dynamics calculations, which reconcile hard and soft force constants.
Assuntos
Pareamento de Bases , DNA/química , Difração de Nêutrons/métodos , Conformação de Ácido Nucleico , TermodinâmicaRESUMO
The results of a combined experimental study of the high-frequency acoustic dynamics and of the vibrational density of states (VDOS) as a function of temperature in a glass of sorbitol are reported here. The excess in the VDOS at approximately 4.5 meV over the Debye, elastic continuum prediction (boson peak) is found to be clearly related to anomalies observed in the acoustic dispersion curve in the mesoscopic wavenumber range of few nm(-1). The quasiharmonic temperature dependence of the acoustic dispersion curves offers a natural explanation for the observed scaling of the boson peak with the elastic medium properties.
RESUMO
Inelastic neutron, light, and x-ray scattering are used to investigate the vibrational density of states (VDOS) and the elastic properties of a sodium silicate glass as a function of temperature. The elastic moduli show the frequency and temperature dependence typical of anharmonic effects. The measured VDOS spectra, up to and including the excess vibrational density at the boson peak, scale with the Debye level only if this is calculated from the high-frequency values of the elastic constants. This emphasizes that conclusions on the relation between VDOS and elastic properties can be drawn only if anharmonic and relaxational effects are properly taken into account.
RESUMO
Diaminodurene crystallizes in the orthorhombic space group Pbca, with eight molecules in the unit cell. Four inequivalent methyl groups with different environments exist in a molecule. The amino groups are also different, which is well reflected in infrared spectra. Two tunneling modes are resolved at 23.7 and 7.0 microeV at 4.5 K. Their intensities are consistent with the presence of two further unresolved tunneling modes. Quasielastic spectra are composed of three Lorentzians of equal intensities. The two low activation energies and tunnel modes are modeled into consistent rotational potentials. The third activation energy and a librational band are used to guess the strength of the two stronger rotational potentials. The internal modes related to the torsional/librational vibrations mix with ring torsions in the range of 70-220 cm(-1). This way the tunnel modes couple to ring torsions whose energy determines the broadening of both tunnel bands. The calculations for free molecules yield mode frequencies a little bit lower than the experimental inelastic neutron scattering (INS) values. Application of theoretical methods elaborated for the crystalline state leads to a satisfactory consistency. It is also valid for bending modes of NH(2) groups, which in the solid state show much higher frequencies than in the gas phase, as expected.
RESUMO
New promising oligo(phenylenethienylene)s have been synthesized to realize suitable materials for improving electronic transport properties, particularly in organic field effect transistors (OFETs). Far-infrared and incoherent neutron scattering measurements have been performed to assign their phonon modes. The assignment of the main low-frequency phonon modes of these materials has been performed experimentally by using a filiation procedure. Assuming a small frequency dispersion of the high-frequency modes, the main intramolecular phonon modes of a model oligomer have been assigned by using first-principles calculations on its isolated molecule. These assignments constitute the preliminary work for a better understanding of these new promising materials in electronic and opto-electronics applications.
RESUMO
We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.
RESUMO
The dynamics of confined systems is of major concern for both fundamental physics and applications. In this Letter, the dynamics of C60 fullerene molecules inside single walled carbon nanotubes is studied using inelastic neutron scattering. We identify the C60 vibrations and highlight their sensitivity to temperature. Moreover, a clear signature of rotational diffusion of the C60 is evidenced, which persists at lower temperature than in 3D bulk C60. It is discussed in terms of confinement and of reduced dimensionality of the C60 chain.
RESUMO
We have analyzed the mechanism of melting of molecular layers adsorbed in porous materials with cylindrical pores and rough pore walls. The working example studied here is a monolayer of methane molecules adsorbed in MCM-41 pore of diameter 2R=4 nm. Both experimental (neutron scattering) and simulation (Monte Carlo) results demonstrate the strong influence of the wall roughness on the melting mechanism. In particular, the transformation between solidlike and liquidlike monolayer phases adsorbed on a rough surface is observed over a broad temperature range, and solidlike properties persist even above the bulk methane melting temperature.