Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(23): 13341-13347, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38830118

RESUMO

Iron is an essential element in the composition of living organisms and plays a crucial role in a wide range of biological activities. The human body primarily obtains essential iron through the consumption of food. Therefore, it is vital for the health of human body to maintain iron homeostasis. The reducing character of the cellular microenvironment enables Fe2+ to occupy a dominant position within the cell. Hence, there is an urgent need for a simple and sensitive tool that can detect a large amount of Fe2+ in organisms. In this work, a highly specific fluorescent chemodosimeter NPCO ("NP" represents the naphthalimide fluorophore, and "CO" represents the carbamoyl oxime structure) for the detection of Fe2+ with excellent sensitivity (LOD = 82 nM) was constructed by incorporating a novel carbamoyl oxime structure as the recognition group. NPCO can be effectively employed for the detection of Fe2+ in food samples, living cells, and zebrafish. Furthermore, by using soybean sprouts as a model plant, the application of NPCO was expanded to detect Fe2+ in plants. Therefore, NPCO could be used as an excellent assay tool for detecting Fe2+ in organisms and is expected to be an important aid in exploring the mechanism of iron regulation.


Assuntos
Corantes Fluorescentes , Ferro , Oximas , Peixe-Zebra , Corantes Fluorescentes/química , Humanos , Animais , Ferro/análise , Ferro/química , Oximas/química
2.
Talanta ; 275: 126091, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678922

RESUMO

Hydrogen peroxide (H2O2), as one of reactive oxygen species (ROS) widely present in the human body, is involved in a variety of physiological activities. Many human diseases are associated with abnormal levels of H2O2 in the body. Mitochondria are the main organelles producing H2O2 in the human body, and monitoring the level of H2O2 in mitochondria can help to deepen the understanding of the detailed functions of H2O2 in physiological activities. However, due to the highly dynamic nature of the cells, real-time quantitative monitoring of H2O2 levels in mitochondria remains an ongoing challenge. Herein, a novel highly immobilized mitochondria-targeting fluorescent probe (QHCl) for detection of H2O2 was reasonably constructed based on quinolinium dye containing benzyl chloride moiety. Spectral experimental results demonstrated QHCl possessed outstanding selectivity toward H2O2 (λex/em = 380/513 nm). In addition, QHCl can quantitatively detect H2O2 in the concentration range of 0-20 µM with excellent sensitivity (LOD = 0.58 µM) under the PBS buffer solution (10 mM, pH = 7.4). Finally, bioimaging experiments demonstrated that the probe QHCl was able to be used for accurately detecting both endogenous and exogenous H2O2 in the mitochondria of living cells and zebrafish by its unique mitochondrial immobilization.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Mitocôndrias , Peixe-Zebra , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Mitocôndrias/química , Humanos , Animais , Células HeLa , Imagem Óptica
3.
Talanta ; 275: 126118, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688087

RESUMO

Nitrite (NO2-) has been widely recognized by the international community as an important substance affecting water quality safety and human health, and the detection of NO2- has always been a hot topic for researchers. Fluorescent probe method is an emerging and ideal way for detecting NO2-. Due to the high dependence of the reported reactive NO2- fluorescent probes on strong acidic systems, using the idea of photochemistry, a fluorescence analysis method for detecting NO2- was proposed in this work to change the necessity of strong acidic solutions in probe detection process. A 365 nm UV-LED lamp was used to irradiate NO2- in aqueous solution to convert it into hydroxyl radicals (HO·), and capture the photodegradation product of NO2- using coumarin-3-carboxylic acid as probe 3-CCA that can react with HO· to generate only one type of strong fluorescent substance. This probe has excellent photostability, selectivity, and anti-interference ability, and can realize the quantitative detection of NO2- (0-15 µM) in pure aqueous solution with pH of 7.4. In addition, its application in actual water samples is also satisfactory, with a recovery rate of (85.91 %-107.30 %). Importantly, we hope that this photolysis strategy can open up the novel thinking to develop suitable fluorescent probes for the analysis and detection of some hardly detected analytes.

4.
Anal Methods ; 16(3): 442-448, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38165694

RESUMO

Carbon monoxide (CO) not only causes damage to life and health as an environmental pollutant, but also undertakes many physiological functions in organisms. In particular, developing means that can be used for the determination of CO in organelles will provide insight into the vital role it plays. Studies have shown that mitochondrial respiration is closely related to CO concentrations, so it is critical to develop tools for CO detection in mitochondria. Here, we use a rhodamine derivative that can target mitochondria as fluorophores to construct a mitochondrial-labeled CO fluorescence probe (Rh-CO) with high sensitivity (detection limit: 9.4 nM), excellent water-solubility, and long emission (λem = 630 nm). Prominently, the probe has outstanding mitochondria-targeting capabilities. Moreover, we used transient glucose deprivation (TGD) and heme to stimulate endogenous CO production in living cells and zebrafish, respectively, and the probe exhibited excellent imaging capabilities. All in all, we expect this probe to contribute to a deeper understanding of the role played by CO in mitochondria.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Humanos , Imagem Óptica , Células HeLa , Mitocôndrias
5.
Anal Chem ; 95(31): 11732-11740, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490364

RESUMO

Currently, kinase inhibitors have been applied in the diagnosis or treatment of cancer with their unique advantages. It is of great significance to develop some comprehensive theranostic reagents based on kinase inhibitors to improve the performance of reagents for biomedical applications. Besides, tracking changes in the intracellular environment (e.g., pH) during cancer development and drug delivery is also critical for cancer research and treatment. Therefore, it is an urgent desire to design some novel multifunctional reagents based on kinase inhibitor strategies that can trace changes in the microenvironment of cancer cells. In this paper, a multifunctional theranostic reagent based on Pim-1 kinase inhibitor 5-bromobenzofuran-2-carboxylic acid is proposed. The theranostic probe binds to tumor-specific Pim-1 kinase, releases strong fluorescence, and produces cytotoxicity, thus achieving cell screening and killing effects. Furthermore, the probe can specifically target lysosomes and sensitively respond to pH. It can be used to track the pH changes in the intracellular environment under conditions of autophagy and external stimulation, as a visual tool to monitor pH fluctuations during cancer treatment. In conclusion, this simple but multifunctional theranostic reagent proposed in this work is expected to provide a promising method for cancer diagnosis and therapy.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-pim-1 , Medicina de Precisão , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Nanomedicina Teranóstica/métodos , Concentração de Íons de Hidrogênio
6.
Anal Chim Acta ; 1267: 341338, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257969

RESUMO

Nowadays, more and more studies have linked the abnormal expression of active molecules in organelles with the occurrence of diseases, so there is an urgent need to develop tools for detecting active molecules in specific organelles. However, the recognition receptors of most organelle-targeting probes currently developed always remain active, which easily causes them to react with the analyte in the cytoplasm, thus misjudging the role of the analyte in the physiological and pathological processes. Therefore, it is of great significance to develop a new strategy for the design of probes capable of high-fidelity imaging of the analyte in specific organelles. Herein, we propose a new strategy that the activation of recognition receptors that can be triggered by the microenvironment of targeting organelles. Based on this strategy, we develop a novel lysosome-targeting fluorescent probe (Lyso-SO2) for imaging of sulfur dioxide (SO2) with high-fidelity in lysosomes. The inert probe is activated by the acidic environment in the lysosome and then responds quickly (<2 s) and sensitively (LOD = 0.34 µM) to SO2. This paradigm by taking full advantage of the features of the organelle microenvironment provides a promising methodology for developing organelle-targeting probes for high-fidelity imaging.


Assuntos
Lisossomos , Organelas , Humanos , Lisossomos/metabolismo , Corantes Fluorescentes/metabolismo , Imagem Óptica , Microscopia de Fluorescência/métodos , Células HeLa
7.
Talanta ; 260: 124567, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121140

RESUMO

Theranostic probe is becoming a powerful tool for diagnosis and treatment of cancer. Although some theranostic probes have been successfully developed, there is still a great room for improvement in sensitive diagnosis and efficient treatment. Herein, we developed a novel GSH-activable theranostic probe NC-G, which uses 1,8-naphthalimide-4-sulfonamide as a fluorescence imaging group and crizotinib as a highly toxic kinase inhibitor to tumor cells. The probe not only has high sensitivity (DL = 74 nM) and specificity, but also can detect GSH sensitively in cells and zebrafish. In addition, probe NC-G can not only show more obvious fluorescence in tumor cells to achieve sensitive diagnosis of tumor cells, but also release the inhibitor crizotinib to achieve high toxicity to tumor cells. It is worth noting that the consumption of GSH can cause oxidative stress response of cells and the release of SO2 can induce cell apoptosis during the recognition process of the probe and GSH. Thus, the synergistic effect of crizotinib, GSH depletion, and SO2 release provides a highly effective therapeutic feature for tumor cells. Therefore, probe NC-G can serve as an excellent theranostic probe for sensitive imaging and highly effective treatment of tumor cells.


Assuntos
Antineoplásicos , Neoplasias , Animais , Medicina de Precisão , Crizotinibe , Peixe-Zebra , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Imagem Óptica/métodos , Glutationa , Corantes Fluorescentes/farmacologia
8.
Bioorg Chem ; 135: 106498, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060848

RESUMO

Nowadays, the selective release of therapeutic drugs into tumor cells has become an important way of tumor treatment due to the high side effects of chemotherapy drugs. As one of the gas mediators, hydrogen sulfide (H2S) is closely related to cancer. Due to the high content of H2S in tumor cells, it can be used as a signaling molecule that triggers the release of drugs to achieve the selective release of therapeutic drugs. In addition, dual-channel fluorescence imaging technology can be better applied to monitor the drug delivery process and distinguish the state before and after drug release, so as to better track the effect of drug therapy. Based on this, we used NBD amines (NBD-NHR) as the recognition group of H2S and connected the tyrosine kinase inhibitor crizotinib to construct an activated dual-channel fluorescent probe CZ-NBD. After the probe enters the tumor cells, it consumes H2S and releases crizotinib, which is highly toxic to the tumor cells. Importantly, the probe displays significant fluorescence changes in different cells, enabling not only the screening of tumor cells, but also tracking and monitoring drug release and tumor cell activity. Therefore, the construction of probe CZ-NBD provides a new strategy for drug release monitoring in tumor cells.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Corantes Fluorescentes/farmacologia , Crizotinibe , Liberação Controlada de Fármacos , Transdução de Sinais , Células HeLa
9.
Anal Chim Acta ; 1230: 340337, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36192056

RESUMO

Considering that mercury ions (Hg2+) have long been a threat to human health and the environment due to their persistence, mobility and bioenrichment, the detection and removal of Hg2+ is of great significance. Therefore, a simple water-soluble naphthalimide derived fluorescent dye with AIEE characteristics was reasonably constructed based on twisted intramolecular charge transfer (TICT) mechanism, a series of probes were synthesized to demonstrate this mechanism. The probe NIDEA (naphthalimide-diethanolamine) bonding Hg2+ through the specific combination of the N-unsubstituted naphthalimide group and Hg2+ to form a classic "imide-Hg-imide" structure. Moreover, the introduction of diethanolamine moiety enhanced the water-solubility of the probe, and also made the dye molecule possess the feature of AIEE. The fluorescence titration experiment showed that there were two good linear relationships between the fluorescence intensity of the probe NIDEA and the concentration of Hg2+ in the range of 0-2.5 µM and 2.5-7.5 µM, and the limit of detection was 46.7 nM. Also, the probe could detect Hg2+ in aqueous solution sensitively, ensuring its application in the actual water sample in the environment and living cells. At the same time, NIDEA can be used to detect Hg2+ by Tyndall effect (TE) without limitation of instrument and technology, the limit of detection was 20.9 nM. Furthermore, this paradigm by introduction of the highly effective TICT structure supports a promising methodology for the construction of simple water-soluble AIE/AIEE-active probes.


Assuntos
Mercúrio , Etanolaminas , Corantes Fluorescentes/química , Humanos , Naftalimidas/química , Espectrometria de Fluorescência , Água/química
10.
Sci Total Environ ; 840: 156445, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35675887

RESUMO

Nickel resources are abundant in the world, and the application of nickel in production and life is more and more extensive. However, excessive nickel entering the environment will not only cause environmental pollution but also seriously endanger plants, animals and human health. Nickel compounds are carcinogenic and have been classified as a class 1 carcinogen. Nickel mainly exists in the form of divalent ions in the environment. However, there are few simple and effective methods for the detection of nickel ions, and these methods still have certain limitations. At present, the mechanisms of nickel influence in organisms are also unclear. Therefore, we constructed a ratiometric fluorescent probe Ra-Ni, which can achieve its own self-calibration and avoid the interference of other factors, thereby realizing the specific identification of nickel ions. The probe can detect nickel ions sensitively with a detection limit as low as 26.2 nM and can respond in a short time (< 2 min), which proves the great potential of the probe in the detection of nickel ions. At the same time, Ra-Ni has also been successfully used for imaging nickel ions in living cells and zebrafish, providing an effective tool for the study of physiological and pathological processes. The detection effect of nickel ions in actual water sample is also satisfactory, which further demonstrates the practicability of Ra-Ni in environmental applications.


Assuntos
Corantes Fluorescentes , Níquel , Animais , Íons , Peixe-Zebra
11.
Anal Chem ; 94(19): 7140-7147, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35522825

RESUMO

Cancer, as a malignant tumor, seriously endangers human health. The study of cancer diagnosis and therapy has great practical significance. The development of theranostic agents has become a very important research topic. Nevertheless, some existing agents still have imperfections, such as complex structures and difficult syntheses. Therefore, it is urgent for researchers to develop simple novel theranostic agents. In this study, the precipitated fluorophore HAPQ was used as a simple drug molecule for the first time and combined with NBD-Cl to construct a simple and efficient theranostic probe (HAPQ-NBD). The theranostic probe can distinguish between tumor cells and normal cells based on the higher levels of biothiol in tumor cells. In addition, the probe can use biothiol as a control switch to release higher levels of precipitated fluorophore HAPQ in tumor cells, leading to selective high toxicity to tumor cells, thus achieving the goal of selectively killing tumor cells. The construction of probe HAPQ-NBD provides a practical tool for the diagnosis and therapy of cancer. It is expected that the development and utilization of precipitated fluorophore will provide a new method and strategy for cancer diagnosis and therapy.


Assuntos
Neoplasias , Medicina de Precisão , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos
12.
Bioorg Chem ; 122: 105741, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35334255

RESUMO

When the cell environment changes or is stimulated, the Golgi apparatus will respond to the corresponding stress, through the opening of related pathways, the expression of corresponding substances can be promoted or inhibited to achieve the purpose of controlling cell redox homeostasis and reducing cytotoxicity. Intuitive analysis of the changes in the content of various substances in the process of stress has important guiding value for the further study of stress response, drug evaluation and clinical diagnosis. Therefore, for the Cys overexpressed during the oxidative stress of the Golgi apparatus, we developed a specific and sensitive fluorescent probe (Gol-NCS) to visually monitor the biologically important Cys in real time. The probe has low cytotoxicity and shows great potential in cell and zebrafish imaging, it can detect the changes of endogenous and exogenous cysteine. It is important to explore the synthetic pathway of Cys during Golgi stress by using the Golgi targeting performance of the probe Gol-NCS. It is confirmed by fluorescence imaging for the first time that the activity of CSE enzyme plays a decisive role in the formation of Cys. Therefore, probe Gol-NCS with excellent photochemical properties is expected to provide help for the research on the involvement of Cys in Golgi stress.


Assuntos
Cisteína , Corantes Fluorescentes , Animais , Cisteína/química , Corantes Fluorescentes/química , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Isotiocianatos , Peixe-Zebra/metabolismo
13.
Anal Chem ; 93(48): 16105-16112, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797641

RESUMO

Cancer is a serious threat to human health, and there is an urgent need to develop new treatment methods to overcome it. Organelle targeting therapy, as a highly effective and less toxic side effect treatment strategy, has great research significance and development prospects. Being an essential organelle, the Golgi apparatus plays a particularly major role in the growth of cancer cells. Acting as an indispensable and highly expressed antioxidant in cancer cells, glutathione (GSH) also contributes greatly during the Golgi oxidative stress. Therefore, it counts for much to track the changes of GSH concentration in Golgi for monitoring the occurrence and development of tumor cells, and exploring Golgi-targeted therapy is also extremely important for effective treatment of cancer. In this work, we designed and synthesized a simple Golgi-targeting fluorescent probe GT-GSH for accurately detecting GSH. The probe GT-GSH reacting with GSH decomposes toxic substances to Golgi, thereby killing cancer cells. At the same time, the ratiometric fluorescent probe can detect the concentration changes of GSH in Golgi stress with high sensitivity and selectivity in living cells. Therefore, such a GSH-responsive fluorescent probe with a Golgi-targeted therapy effect gives a new method for accurate treatment of cancer.


Assuntos
Corantes Fluorescentes , Neoplasias , Glutationa/metabolismo , Complexo de Golgi/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA