Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301596, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470204

RESUMO

Printed electronics have made remarkable progress in recent years and inkjet printing (IJP) has emerged as one of the leading methods for fabricating printed electronic devices. However, challenges such as nozzle clogging, and strict ink formulation constraints have limited their widespread use. To address this issue, a novel nozzle-free printing technology is explored, which is enabled by laser-generated focused ultrasound, as a potential alternative printing modality called Shock-wave Jet Printing (SJP). Specifically, the performance of SJP-printed and IJP-printed bottom-gated carbon nanotube (CNT) thin film transistors (TFTs) is compared. While IJP required ten print passes to achieve fully functional devices with channel dimensions ranging from tens to hundreds of micrometers, SJP achieved comparable performance with just a single pass. For optimized devices, SJP demonstrated six times higher maximum mobility than IJP-printed devices. Furthermore, the advantages of nozzle-free printing are evident, as SJP successfully printed stored and unsonicated inks, delivering moderate electrical performance, whereas IJP suffered from nozzle clogging due to CNT agglomeration. Moreover, SJP can print significantly longer CNTs, spanning the entire range of tube lengths of commercially available CNT ink. The findings from this study contribute to the advancement of nanomaterial printing, ink formulation, and the development of cost-effective printable electronics.

2.
ACS Appl Mater Interfaces ; 14(27): 31099-31108, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35786830

RESUMO

We demonstrate tunable structural color patterns that span the visible spectrum using atomic layer deposition (ALD). Asymmetric metal-dielectric-metal structures were sequentially deposited with nickel, zinc oxide, and a thin copper layer to form an optical cavity. The color response was precisely adjusted by tuning the zinc oxide (ZnO) thickness using ALD, which was consistent with model predictions. Owing to the conformal nature of ALD, this allows for uniform and tunable coloration of non-planar three-dimensional (3D) objects, as exemplified by adding color to 3D-printed parts produced by metal additive manufacturing. Proper choice of inorganic layered structures and materials allows the structural color to be stable at elevated temperatures, in contrast to traditional paints. To print multiple colors on a single sample, polymer inhibitors were patterned in a desired geometry using electrohydrodynamic jet (e-jet) printing, followed by area-selective ALD in the unpassivated regions. The ability to achieve 3D color printing, both at the micro- and macroscales, provides a new pathway to tune the optical and aesthetic properties during additive manufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...