Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18196, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521911

RESUMO

The 3C protease is a key factor in picornavirus-induced pathologies with a comprehensive action on cell targets. However, the effects induced by the enzyme have not been described at the organismic level. Here, the model of developing Danio rerio embryos was used to analyze possible toxic effects of the 3C protease of human hepatitis A virus (3Cpro) at the whole-body level. The transient 3Cpro expression had a notable lethal effect and induced a number of specific abnormalities in Danio rerio embryos within 24 h. These effects are due to the proteolytic activity of the enzyme. At the same time, the 3Cpro variant with reduced catalytic activity (3Cmut) increased the incidence of embryonic abnormalities; however, this effect was smaller compared to the native enzyme form. While the expression of 3Cmut increased the overall rate of abnormalities, no predominance of specific ones was observed. The data obtained point to a presence significant impact of picornavirus 3Cprotease at the whole-organism level and make contribution to the study of the infectious process caused by human hepatitis A virus.


Assuntos
Proteases Virais 3C/toxicidade , Embrião não Mamífero/anormalidades , Transgenes , Proteases Virais 3C/genética , Proteases Virais 3C/metabolismo , Animais , Embrião não Mamífero/metabolismo , Células HEK293 , Humanos , Peixe-Zebra
2.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360671

RESUMO

Regulated cell death (RCD) is a fundamental process common to nearly all living beings and essential for the development and tissue homeostasis in animals and humans. A wide range of molecules can induce RCD, including a number of viral proteolytic enzymes. To date, numerous data indicate that picornaviral 3C proteases can induce RCD. In most reported cases, these proteases induce classical caspase-dependent apoptosis. In contrast, the human hepatitis A virus 3C protease (3Cpro) has recently been shown to cause caspase-independent cell death accompanied by previously undescribed features. Here, we expressed 3Cpro in HEK293, HeLa, and A549 human cell lines to characterize 3Cpro-induced cell death morphologically and biochemically using flow cytometry and fluorescence microscopy. We found that dead cells demonstrated necrosis-like morphological changes including permeabilization of the plasma membrane, loss of mitochondrial potential, as well as mitochondria and nuclei swelling. Additionally, we showed that 3Cpro-induced cell death was efficiently blocked by ferroptosis inhibitors and was accompanied by intense lipid peroxidation. Taken together, these results indicate that 3Cpro induces ferroptosis upon its individual expression in human cells. This is the first demonstration that a proteolytic enzyme can induce ferroptosis, the recently discovered and actively studied type of RCD.


Assuntos
Proteases Virais 3C/metabolismo , Núcleo Celular/patologia , Ferroptose , Mitocôndrias/patologia , Proteases Virais 3C/genética , Células A549 , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Técnicas In Vitro , Peroxidação de Lipídeos , Mitocôndrias/metabolismo
3.
PLoS One ; 15(4): e0232045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330156

RESUMO

The functional efficiency of the expression cassettes integrated into a plasmid and a PCR- amplified fragment was comparatively analyzed after transient transfection in vitro or introduction into the developing embryo of Danio rerio. The cassettes contained the reporter genes, luciferase of Photinus pyralis (luc) or enhanced green fluorescent protein, under the control of the promoter of human cytomegalovirus immediate-early genes. In the in vitro system, the efficiency of the circular plasmid was 2.5 times higher than that of the PCR- amplified fragment. The effect of mutations in the expression cassette on the efficiency of the transgene expression in the PCR- amplified fragment was quantitatively evaluated. The mutations generated after 25 amplification cycles with Taq DNA polymerase decreased luciferase activity in transfected cells by 65-85%. Thus, mutations are the key factor of decreased functional efficiency of the PCR- amplified fragment relative to the circular plasmid in this experimental model, while other factors apparently have a lesser impact. At the organism level, no significant difference in the expression efficiency of the plasmid and PCR- amplified fragment has been revealed. Comparison of the vector efficiencies in in vivo and in vitro systems demonstrates that the level of luciferase in the D. rerio cell lysate, normalized to the molar concentration of the vector, is by three orders of magnitude higher than that after the cell transfection in vitro, which indicates that the quantitative data obtained for in vitro systems should not be directly extrapolated to the organism level.


Assuntos
Genes Reporter/genética , Vetores Genéticos/genética , Reação em Cadeia da Polimerase/métodos , Animais , Linhagem Celular Tumoral , Eficiência/fisiologia , Vaga-Lumes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Luciferases/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Transfecção/métodos , Transgenes/genética , Peixe-Zebra/metabolismo
4.
BMC Cell Biol ; 16: 4, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25886889

RESUMO

BACKGROUND: 3C proteases, the main proteases of picornaviruses, play the key role in viral life cycle by processing polyproteins. In addition, 3C proteases digest certain host cell proteins to suppress antiviral defense, transcription, and translation. The activity of 3C proteases per se induces host cell death, which makes them critical factors of viral cytotoxicity. To date, cytotoxic effects have been studied for several 3C proteases, all of which induce apoptosis. This study for the first time describes the cytotoxic effect of 3C protease of human hepatitis A virus (3Cpro), the only proteolytic enzyme of the virus. RESULTS: Individual expression of 3Cpro induced catalytic activity-dependent cell death, which was not abrogated by the pan-caspase inhibitor (z-VAD-fmk) and was not accompanied by phosphatidylserine externalization in contrast to other picornaviral 3C proteases. The cell survival was also not affected by the inhibitors of cysteine proteases (z-FA-fmk) and RIP1 kinase (necrostatin-1), critical enzymes involved in non-apoptotic cell death. A substantial fraction of dying cells demonstrated numerous non-acidic cytoplasmic vacuoles with not previously described features and originating from several types of endosomal/lysosomal organelles. The lysosomal protein Lamp1 and GTPases Rab5, Rab7, Rab9, and Rab11 were associated with the vacuolar membranes. The vacuolization was completely blocked by the vacuolar ATPase inhibitor (bafilomycin A1) and did not depend on the activity of the principal factors of endosomal transport, GTPases Rab5 and Rab7, as well as on autophagy and macropinocytosis. CONCLUSIONS: 3Cpro, apart from other picornaviral 3C proteases, induces caspase-independent cell death, accompanying by cytoplasmic vacuolization. 3Cpro-induced vacuoles have unique properties and are formed from several organelle types of the endosomal/lysosomal compartment. The data obtained demonstrate previously undocumented morphological characters of the 3Cpro-induced cell death, which can reflect unknown aspects of the human hepatitis A virus-host cell interaction.


Assuntos
Caspases/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Hepatite A/enzimologia , Lisossomos/metabolismo , Proteínas Virais/metabolismo , Proteases Virais 3C , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/química , Linhagem Celular Tumoral , Cisteína Endopeptidases/genética , Endossomos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Macrolídeos/farmacologia , Microscopia Eletrônica , Mitocôndrias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...