Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38915722

RESUMO

The mammalian cortex is comprised of cells with different morphological, physiological, and molecular properties that can be classified according to shared properties into cell types. Defining the contribution of each cell type to the computational and cognitive processes that are guided by the cortex is essential for understanding its function in health and disease. We use transcriptomic and epigenomic cortical cell type taxonomies from mice and humans to define marker genes and enhancers, and to build genetic tools for cortical cell types. Here, we present a large toolkit for selective targeting of cortical populations, including mouse transgenic lines and recombinant adeno-associated virus (AAV) vectors containing genomic enhancers. We report evaluation of fifteen new transgenic driver lines and over 680 different enhancer AAVs covering all major subclasses of cortical cells, with many achieving a high degree of specificity, comparable with existing transgenic lines. We find that the transgenic lines based on marker genes can provide exceptional specificity and completeness of cell type labeling, but frequently require generation of a triple-transgenic cross for best usability/specificity. On the other hand, enhancer AAVs are easy to screen and use, and can be easily modified to express diverse cargo, such as recombinases. However, their use depends on many factors, such as viral titer and route of administration. The tools reported here as well as the scaled process of tool creation provide an unprecedented resource that should enable diverse experimental strategies towards understanding mammalian cortex and brain function.

2.
Biotechnol J ; 16(7): e2100098, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34014036

RESUMO

BACKGROUND: Ammonia concentrations typically increase during mammalian cell cultures, mainly due to glutamine and other amino acid consumption. An early ammonia stress indicator is a metabolic shift with respect to alanine. To determine the underlying mechanisms of this metabolic shift, a Chinese hamster ovary (CHO) cell line with two distinct ages (standard and young) was cultured in parallel fed-batch bioreactors with 0 mM or 10 mM ammonia added at 12 h. Reduced viable cell densities were observed for the stressed cells, while viability was not significantly affected. The stressed cultures had higher alanine, lactate, and glutamate accumulation. Interestingly, the ammonia concentrations were similar by Day 8.5 for all cultures. We hypothesized the ammonia was converted to alanine as a coping mechanism. Interestingly, no significant differences were observed for metabolite profiles due to cell age. Glycosylation analysis showed the ammonia stress reduced galactosylation, sialylation, and fucosylation. Transcriptome analysis of the standard-aged cultures indicated the ammonia stress had a limited impact on the transcriptome, where few of the significant changes were directly related metabolite or glycosylation reactions. These results indicate that mechanisms used to alleviate ammonia stress are most likely controlled post-transcriptionally, and this is where future research should focus.


Assuntos
Amônia , Imunoglobulina G , Alanina , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Imunoglobulina G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...