Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38954488

RESUMO

In the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3ß inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP). PDA-AMSNs loaded with NCM (i.e., PDA-AMSN-D) into the matrix of PANAP were injected into the damaged area in an in vivo cryogenic brain injury model (CBI). This approach is specifically built while keeping the logic AND gate circuit as the primary focus. Where NCM and PDA-AMSNs act as two input signals and neurological functional recovery as a single output. Therapeutically, PDA-AMSN-D significantly decreased infarct volume, enhanced neurogenesis, rejuvenated BBB senescence, and accelerated neurological function recovery in a CBI.

2.
ACS Appl Mater Interfaces ; 16(24): 30929-30957, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38832934

RESUMO

Bioengineered composite hydrogel platforms made of a supramolecular coassembly have recently garnered significant attention as promising biomaterial-based healthcare therapeutics. The mechanical durability of amyloids, in conjunction with the structured charged framework rendered by biologically abundant key ECM component glycosaminoglycan, enables us to design minimalistic customized biomaterial suited for stimuli responsive therapy. In this study, by harnessing the heparin sulfate-binding aptitude of amyloid fibrils, we have constructed a pH-responsive extracellular matrix (ECM) mimicking hydrogel matrix. This effective biocompatible platform comprising heparin sulfate-amyloid coassembled hydrogel embedded with polyphenol functionalized silver nanoparticles not only provide a native skin ECM-like conductive environment but also provide wound-microenvironment responsive on-demand superior antibacterial efficacy for effective diabetic wound healing. Interestingly, both the cytocompatibility and antibacterial properties of this bioinspired matrix can be fine-tuned by controlling the mutual ratio of heparin sulfate-amyloid and incubated silver nanoparticle components, respectively. The designed biomaterial platform exhibits notable effectiveness in the treatment of chronic hyperglycemic wounds infected with multidrug-resistant bacteria, because of the integration of pH-responsive release characteristics of the incubated functionalized AgNP and the antibacterial amyloid fibrils. In addition to this, the aforementioned assemblage shows exceptional hemocompatibility with significant antibiofilm and antioxidant characteristics. Histological evidence of the incised skin tissue sections indicates that the fabricated composite hydrogel is also effective in controlling pro-inflammatory cytokines such as IL6 and TNFα expressions at the wound vicinity with significant upregulation of angiogenesis markers like CD31 and α-SMA.


Assuntos
Amiloide , Antibacterianos , Matriz Extracelular , Heparina , Hidrogéis , Nanopartículas Metálicas , Prata , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Heparina/química , Heparina/farmacologia , Prata/química , Prata/farmacologia , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Nanopartículas Metálicas/química , Amiloide/química , Amiloide/metabolismo , Animais , Humanos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
3.
Life Sci ; 351: 122836, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879159

RESUMO

AIM: Exploring the efficacy of ß-carboline-based molecular inhibitors in targeting microtubules for the development of novel anticancer therapeutics. MATERIALS AND METHODS: We synthesized a series of 1-Aryl-N-substituted-ß-carboline-3-carboxamide compounds and evaluated their cytotoxicity against human lung carcinoma (A549) cells using the MTT assay. Normal lung fibroblast cells (WI-38) were used to assess compound selectivity. The mechanism of action of MJ-211 was elucidated through Western blot analysis of key pro-apoptotic and cell cycle regulatory proteins. Additionally, the inhibitory effect of MJ-211 on multicellular 3D spheroid growth of A549 cells was evaluated. KEY FINDINGS: Lead compound MJ-211 exhibited remarkable cytotoxicity against A549 cells with an IC50 of 4.075 µM at 24 h treatment and IC50 of 1.7 nM after 72 h of treatment, while demonstrating selectivity towards normal WI-38 cells. MJ-211 activated pro-apoptotic factors Bim and p53, and suppressed Cyclin B1, Phospho HSP 27, BubR1, Mad 2, ERK1/2, and NF-κB, indicating its potent antimitotic and pro-apoptotic effects. MJ-211 significantly suppressed the migration of cells and inhibited the growth of A549 cell-derived multicellular 3D spheroids, highlighting its efficacy in a more physiologically relevant model. SIGNIFICANCE: Cytotoxic effect of MJ-211 against cancer cells, selectivity towards normal cells, and ability to modulate key regulatory proteins involved in apoptosis and cell cycle progression underscore its potential as a promising template for further anticancer lead optimization. Moreover, the inhibitory effect of MJ-211 on multicellular spheroid growth suggests its efficacy in combating tumor heterogeneity and resistance mechanisms, thereby offering a promising avenue for future anticancer drug development.


Assuntos
Carbolinas , Microtúbulos , NF-kappa B , Humanos , Carbolinas/farmacologia , NF-kappa B/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Células A549 , Antimitóticos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos
4.
ACS Infect Dis ; 10(4): 1267-1285, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442370

RESUMO

The escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants. Recent research interest lies in weak membrane-perturbing agents with unique cyclic hydrophobic components, addressing a significant gap in antimicrobial drug exploration. Our study demonstrates that quinoline-based amphipathic small molecules, SG-B-52 and SG-B-22, significantly reduce MICs of selected beta-lactam antibiotics (ampicillin and amoxicillin) against lethal methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, membrane perturbation, depolarization, and ROS generation drive cellular lysis and death. These molecules display minimal in vitro and in vivo toxicity, showcased through hemolysis assays, cell cytotoxicity analysis, and studies on albino Wistar rats. SG-B-52 exhibits impressive biofilm-clearing abilities against MRSA biofilms, proposing a strategy to enhance beta-lactam antibiosis and encouraging the development of potent antimicrobial potentiators.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Quinolinas , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Sinergismo Farmacológico , Anti-Infecciosos/farmacologia , Quinolinas/farmacologia
5.
J Med Chem ; 66(16): 11555-11572, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37566805

RESUMO

Antimicrobial cationic peptides are intriguing and propitious antibiotics for the future, even against multidrug-resistant superbugs. Venoms serve as a source of cutting-edge therapeutics and innovative, unexplored medicines. In this study, a novel cationic peptide library consisting of seven sequences was designed and synthesized from the snake venom cathelicidin, batroxicidin (BatxC), with the inclusion of the FLPII motif at the N-terminus. SP1V3_1 demonstrated exceptional antibacterial effectiveness against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae and destroyed the bacteria by depolarizing, rupturing, and permeabilizing their membranes, as evident from fluorescence assays, atomic force microscopy, and scanning electron microscopy. SP1V3_1 was observed to modulate the immune response in LPS-elicited U937 cells and exhibited good antibiofilm activity against MRSA and K. pneumoniae. The peptide promoted wound healing and disinfection in the murine model. The study demonstrated that SP1V3_1 is an exciting peptide lead and may be explored further for the development of better therapeutic peptides.


Assuntos
Anti-Infecciosos , Desinfetantes , Staphylococcus aureus Resistente à Meticilina , Camundongos , Animais , Testes de Sensibilidade Microbiana , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Cicatrização , Venenos de Serpentes , Escherichia coli
6.
ACS Appl Mater Interfaces ; 15(28): 33457-33479, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37429020

RESUMO

The ingrained mechanical robustness of amyloids in association with their fine-tunable physicochemical properties results in the rational design and synthesis of tailor-made biomaterials for specific applications. However, the incredible antimicrobial efficacy of these ensembles has largely been overlooked. This research work provides an insight into the interplay between self-assembly and antimicrobial activity of amyloid-derived peptide amphiphiles and thereby establishes a newfangled design principle toward the development of potent antimicrobial materials with superior wound healing efficacy. Apart from the relationship with many neurodegenerative diseases, amyloids are now considered as an important cornerstone of our innate immune response against pathogenic microbes. Impelled by this observation, a class of amphiphilic antimicrobial peptide-based biomaterial has been designed by taking Aß42 as a template. The designed AMP due to its amphipathic nature undergoes rapid self-assembly to form a biocompatible supramolecular hydrogel network having significant antibacterial as well as wound healing effectivity on both Gram-negative P. aeruginosa and MRSA-infected diabetic wounds via reduced inflammatory response and enhanced angiogenesis. Results suggest that disease-forming amyloids can be used as a blueprint for the fabrication of biomaterial-based antimicrobial therapeutics by fine-tuning both the hydrophobicity of the ß-aggregation prone zone as well as membrane interacting cationic residues.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Hidrogéis/farmacologia , Hidrogéis/química , Peptídeos , Amiloide , Proteínas Amiloidogênicas
7.
ACS Bio Med Chem Au ; 3(2): 158-173, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37101809

RESUMO

Polymerization of soluble amyloid beta (Aß) peptide into protease-stable insoluble fibrillary aggregates is a critical step in the pathogenesis of Alzheimer's disease (AD). The N-terminal (NT) hydrophobic central domain fragment 16KLVFF20 plays an important role in the formation and stabilization of ß-sheets by self-recognition of the parent Aß peptide, followed by aggregation of Aß in the AD brain. Here, we analyze the effect of the NT region inducing ß-sheet formation in the Aß peptide by a single amino acid mutation in the native Aß peptide fragment. We designed 14 hydrophobic peptides (NT-01 to NT-14) by a single mutation at 18Val by using hydrophobic residues leucine and proline in the natural Aß peptide fragment (KLVFFAE) and analyzed its effect on the formation of Aß aggregates. Among all these peptides, NT-02, NT-03, and NT-13 significantly affected the Aß aggregate formation. When the NT peptides were coincubated with the Aß peptide, a significant reduction in ß-sheet formation and increment in random coil content of Aß was seen, confirmed by circular dichroism spectroscopy and Fourier transform infrared spectroscopy, followed by the reduction of fibril formation measured by the thioflavin-T (ThT) binding assay. The aggregation inhibition was monitored by Congo red and ThT staining and electron microscopic examination. Moreover, the NT peptides protect the PC-12 differentiated neurons from Aß-induced toxicity and apoptosis in vitro. Thus, manipulation of the Aß secondary structure with protease-stable ligands that promote the random coil conformation may provide a tool to control the Aß aggregates observed in AD patients.

8.
ACS Chem Neurosci ; 14(2): 246-260, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36583718

RESUMO

Amyloid-ß 42(Aß42), an enzymatically cleaved (1-42 amino acid long) toxic peptide remnant, has long been reported to play the key role in Alzheimer's disease (AD). Aß42 also plays the key role in the onset of other AD-related factors including hyperphosphorylation of tau protein that forms intracellular neurofibrillary tangles, imbalances in the function of the neurotransmitter acetylcholine, and even generation of reactive oxygen species (ROS), disrupting the cytoskeleton and homeostasis of the cell. To address these issues, researchers have tried to construct several strategies to target multiple aspects of the disease but failed to produce any clinically successful therapeutic molecules. In this article, we report a new peptoid called RA-1 that was designed and constructed from the hydrophobic stretch of the Aß42 peptide, 16KLVFFA21. This hydrophobic stretch is primarily responsible for the Aß42 peptide aggregation. Experimental study showed that the RA-1 peptoid is stable under proteolytic conditions, can stabilize the microtubule, and can inhibit the formation of toxic Aß42 aggregates by attenuating hydrophobic interactions between Aß42 monomers. Furthermore, results from various intracellular assays showed that RA-1 inhibits Aß42 fibril formation caused by the imbalance in AchE activity, reduces the production of cytotoxic reactive oxygen species (ROS), and promotes neurite outgrowth even in the toxic environment. Remarkably, we have also demonstrated that our peptoid has significant ability to improve the cognitive ability and memory impairment in in vivo rats exposed to AlCl3 and d-galactose (d-gal) dementia model. These findings are also validated with histological studies. Overall, our newly developed peptoid emerges as a multimodal potent therapeutic lead molecule against AD.


Assuntos
Doença de Alzheimer , Peptoides , Ratos , Animais , Doença de Alzheimer/metabolismo , Espécies Reativas de Oxigênio , Peptoides/farmacologia , Peptoides/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Interações Hidrofóbicas e Hidrofílicas
9.
J Med Chem ; 65(20): 13866-13878, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36240440

RESUMO

Protein-protein interactions play a crucial role in microtubule dynamics. Microtubules are considered as a key target for the design and development of anticancer therapeutics, where inhibition of tubulin-tubulin interactions plays a crucial role. Here, we focused on a few key helical stretches at the interface of α,ß-tubulin heterodimers and developed a structural mimic of these helical peptides, which can serve as potent inhibitors of microtubule polymerization. To induce helicity, we have made stapled analogues of these sequences. Thereafter, we modified the lead sequences of the antimitotic stapled peptides with halo derivatives. It is observed that halo-substituted stapled peptides follow an interesting trend for the electronegativity of halogen atoms in interaction patterns with tubulin and a correlation in the toxicity profile. Remarkably, we found that para-fluorophenylalanine-modified stapled peptide is the most potent inhibitors, which perturbs microtubule dynamics, induces apoptotic death, and inhibits the growth of melanoma.


Assuntos
Antimitóticos , Tubulina (Proteína) , Tubulina (Proteína)/química , Moduladores de Tubulina/farmacologia , Antimitóticos/farmacologia , p-Fluorfenilalanina , Peptídeos/farmacologia , Microtúbulos , Halogênios
10.
ACS Chem Neurosci ; 13(16): 2503-2516, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35926183

RESUMO

The formation and accumulation of amyloid beta (Aß) peptide are considered the crucial events that are responsible for the progression of Alzheimer's disease (AD). Herein, we have designed and synthesized a series of fluorescent probes by using electron acceptor-donor end groups interacting with a π-conjugating system for the detection of Aß aggregates. The chemical structure of these probes denoted as RMs, having a conjugated π-system (C═C), showed a maximum emission in PBS (>600 nm), which is the best range for a fluorescent imaging probe. Among all these probes, RM-28 showed an excellent fluorescence property with an emission maximum of >598 nm upon binding to Aß aggregates. RM-28 also showed high sensitivity (7.5-fold) and high affinities toward Aß aggregates (Kd = 175.69 ± 4.8 nM; Ka = 0.5 × 107 M-1). It can cross the blood-brain barrier of mice efficiently. The affinity of RM-28 toward Aß aggregates was observed in 3xTg-AD brain sections of the hippocampus and cortex region using a fluorescent imaging technique, as well as an in vitro fluorescence-based binding assay with Aß aggregates. Moreover, RM-28 is highly specific to Aß aggregates and does not bind with intracellular proteins like bovine serum albumin (BSA) and α-synuclein (α-Syn) aggregates. The results indicate that the probe RM-28 emerges as an efficient and veritable highly specific fluorescent probe for the detection of Aß aggregates in both in vitro and in vivo model systems.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Benzotiazóis/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Corantes Fluorescentes/química , Camundongos
11.
Sci Rep ; 12(1): 10772, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750870

RESUMO

Breast cancer is the most common malignancy in women and is a heterogeneous disease at molecular level. Early detection and specificity are the key prerequisite for the treatment of this deadly cancer. To address these issues attention on the breast cancer specific receptor protein(s) is the most realistic option. Herein estrogen (E) and progesterone (Pg) receptors(R) were considered to design fluorescent molecular probes with possible therapeutic option. We adopted QSAR technique to design a library of benzothiazole-purine hybrid molecules. Molecular docking offers us three screened molecules as most potential. Among these molecules one abbreviated as "CPIB" showed blue fluorescence and detected ER positive cancer cells at 1 nM concentration. At elevated concentration, CPIB induces apoptotic deaths of same cancer cells through targeting intracellular microtubules without affecting normal cells or ER negative cells. CPIB is one of its kind with two-in-one potential of "Detection and Destroy" ability targeting ER positive breast cancer cells.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Neoplasias da Mama/patologia , Feminino , Corantes Fluorescentes/uso terapêutico , Humanos , Microtúbulos/patologia , Simulação de Acoplamento Molecular , Sondas Moleculares , Purinas/uso terapêutico , Receptores de Estrogênio/genética , Receptores de Progesterona/genética
12.
Front Mol Neurosci ; 15: 1002419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590911

RESUMO

The transdifferentiation of human mesenchymal stem cells (hMSC) to functional neurons is crucial for the development of future neuro-regenerative therapeutics. Currently, transdifferentiation of hMSCs to neurons requires a "chemical cocktail" along with neural growth factors. The role of the individual molecules present in a "chemical cocktail" is poorly understood and may cause unwanted toxicity or adverse effects. Toward, this goal, we have showcased the discovery of an imidazole-based "single-molecule" transdifferentiation initiator SG-145C. This discovery was achieved via screening of a small molecule library through extensive in silico studies to shortlist the best-fitting molecules. This discovery evolved through a careful selection to target Glycogen synthase kinase-3ß (GSK-3ß), which is one of the important proteins responsible for neurogenesis. Rigorous computational experiments, as well as extensive biological assays, confirmed that SG-145C has significant potential to transdifferentiate hMSCs to neurons. Interestingly, our results suggest that SG-145C can inhibit the proteasomal degradation of phosphorylated ß-catenin, in turn promoting transdifferentiation of hMSCs into neurons via the Wnt pathway.

13.
J Phys Chem B ; 125(31): 8768-8780, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34328335

RESUMO

The microtubule is regarded as the key target for designing anticancer and neurotherapeutic drugs due to its functional importance in eukaryotic cells including neurons. The microtubule is a dynamic hollow polymer tube consisting of α,ß-tubulin heterodimer. Polymerization of α,ß-tubulin heterodimer resulted in microtubule formation. GTP plays a crucial role in microtubule polymerization. It binds at the exchangeable binding site of the ß-tubulin heterodimer, and it is one of the most crucial therapeutic hot spots for designing anticancer therapeutics. In this manuscript, we have shown using an in silico strategy and various in vitro and cellular experiments that the binding affinity to the tubulin and cancer therapeutic potential of an exchangeable GTP/GDP binding antimitotic tetrapeptide (SP: Ser-Leu-Arg-Pro) is increased through changing proline with the multifluorine substituted proline. This study showcases the importance of the proline amino acid and its pyrrolidine ring in the regulation of binding with tubulin at the GTP binding pocket.


Assuntos
Antimitóticos , Tubulina (Proteína) , Antimitóticos/farmacologia , Sítios de Ligação , Flúor , Guanosina Trifosfato , Microtúbulos/metabolismo , Prolina , Tubulina (Proteína)/metabolismo
14.
ACS Omega ; 5(30): 18628-18641, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775865

RESUMO

In Alzheimer's disease (AD), insoluble Aß42 peptide fragments self-aggregate and form oligomers and fibrils in the brain, causing neurotoxicity. Further, the presence of redox-active metal ions such as Cu2+ enhances the aggregation process through chelation with these Aß42 aggregates as well as generation of Aß42-mediated reactive oxygen species (ROS). Herein, we have adopted a bioinspired strategy to design and develop a multifunctional glycopeptide hybrid molecule (Glupep), which can serve as a potential AD therapeutic. This molecule consists of a natural metal-chelating tetrapeptide motif of human serum albumin (HSA), a ß-sheet breaker peptide, and a sugar moiety for better bioavailability. We performed different biophysical and docking experiments, which revealed that Glupep not only associates with Aß42 but also prevents its self-aggregation to form toxic oligomers and fibrils. Moreover, Glupep was also shown to sequester out Cu2+ from the Aß-Cu2+ complex, reducing the ROS formation and toxicity. Besides, this study also revealed that Glupep could protect PC12-derived neurons from Aß-Cu2+-mediated toxicity by reducing intracellular ROS generation and stabilizing the mitochondrial membrane potential. All these exciting features show Glupep to be a potent inhibitor of Aß42-mediated multifaceted toxicity and a prospective therapeutic lead for AD.

15.
RSC Adv ; 10(47): 28243-28266, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35685027

RESUMO

The sudden ravaging outbreak of a novel coronavirus, or SARS-CoV-2, in terms of virulence, severity, and casualties has already overtaken previous versions of coronaviruses, like SARS CoV and MERS CoV. Originating from its epicenter in Wuhan, China, this mutated version of the influenza virus with its associated pandemic effects has engulfed the whole world with awful speed. In the midst of this bewildering situation, medical and scientific communities are on their toes to produce the potential vaccine-mediated eradication of this virus. Though the chances are really high, to date no such panacea has been reported. The time requirements for the onerous procedures of human trials for the successful clinical translation of any vaccine or potential therapeutics are also a major concern. In order to build some resistance against this massive pandemic, the repurposing of some earlier antiviral drugs has been done, along with the refurbishment of some immune-responsive alternative avenues, like monoclonal antibody mediated neutralization, interferon treatment, and plasma therapy. New drugs developed from the RBD domain of the virus spike protein and drugs targeting viral proteases are also undergoing further research and have shown potential from preliminary results. The sole purpose of this review article is to provide a brief collective overview of the recent status of therapeutics advances and approaches, and their current state of implementation for the management of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...