Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 23: 101603, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100247

RESUMO

Animal cell culture technology in the production of slaughter-free meat offers ethical advantages with regards to animal welfare, rendering it a more socially acceptable approach for dog meat production. In this study, edible plant-derived scaffold was used as a platform for cell expansion to construct cell-cultured dog meat slices. Primary dog skeletal muscle satellite cells (MSCs) and adipose stem cells (ASCs) were isolated and cultured as seed cells, and 3D spheroid culture in vitro promoted MSCs and ASCs myogenic and adipogenic differentiation, respectively. Natural leaf veins (NLV) were produced as edible mesh scaffolds to create 3D engineered dog muscle and fat tissues. After MSCs and ASCs adhered, proliferated and differentiated on the NLV scaffolds, and muscle and fat slices were produced with cultured dog muscle fibers and adipocytes, respectively. These findings demonstrate the potential of plant-derived NLV scaffolds in the production of cultured dog meat.

2.
Small ; 20(12): e2306313, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948422

RESUMO

Ion resource recovery from organic wastewater is beneficial for achieving emission peaks and carbon neutrality targets. Advanced organic solvent-resistant anion exchange membranes (AEMs) for treating organic wastewater via electrodialysis (ED) are of significant interest. Herein, a kind of 3D network AEM based on poly(arylene ether sulfone) cross-linked with a flexible cross-linker (DBH) for ion resource recovery via ED in organic solvent system is reported. Investigations demonstrate that the as-prepared AEMs show excellent dimensional stability in 60% DMSO (aq.), 60% ethanol (aq.), and 60% acetone (aq.), respectively. For example, the optimized AEM shows very low swelling ratios of 1.04-1.10% in the organic solvents. ED desalination ratio can reach 99.1% after exposure of the AEM to organic solvents for 30 days, and remain > 99% in a mixture solution containing organic solvents and 0.5 m NaCl. Additionally, at a current density of 2.5 mA cm-2, the optimized AEM soaked in organic solvents for 30 days shows a high perm-selectivity (Cl-/SO4 2-) of 133.09 (vs 13.11, Neosepta ACS). The superior ED performance is attributed to the stable continuous sub-nanochannels within AEM confirmed by SAXS, rotational energy barriers, etc. This work shows the potential application of cross-linked AEMs for resource recovery in organic wastewater.

3.
Front Vet Sci ; 9: 922390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090163

RESUMO

Trochlear groove reconstruction (TGR) is a common treatment for patellar luxation (PL) in dogs. Nevertheless, the prognosis of TGR is poor due to the cartilage damage and secondary inflammation. To study the repair effect of canine umbilical cord mesenchymal stem cells (UC-MSCs) after TGR, 10 experimental dogs were given TGR surgery and then randomized into two groups: Treatment group (1 ml suspension allogeneic UC-MSCs (106 cells/kg) was injected into the cavum articulare on days 0, 7, and 14 after TGR); and the Model group (injected with 1 ml of physiological saline as negative control). The therapeutic effect of UC-MSCs was studied by blood routine examination, inflammatory factor index detection, double-blind knee score, histopathology, and computed tomography (CT) scans. The results showed that the total number of white blood cells and neutrophils in the model group were significantly higher than those in the treatment group on both 7 days and 21 days, postoperatively (P < 0.05); there were no significant changes in the levels of IL-6, MMP-13, and TGF-ß1 between the model group and the treatment group throughout the days of testing. The double-blind knee scores of the treatment group were significantly lower than the model group on 1st, 4th, and 5th days postoperatively (P < 0.05). The treatment group showed low-pain sensation, stable gait, and fast recovery of muscle strength in the knee score, and the wound healing of the treatment group returned to normal on the 5th day after surgery; CT scans and gross observation showed that the cartilage growth in the treatment group was faster than that in the model group. Histological observation of cases showed that fibro chondrocytes were predominantly found in the treatment group, and the distribution of chondrocytes was uneven, while the model group showed a large number of fibrous tissue hyperplasia, fissures, and unequal matrix staining. Intra-articular injection of UC-MSCs after TGR has the effect of relieving pain and promoting the repair of bone defects, making the operative limb recover function earlier, making up for the deficiency of TGR, and improving the effect of PL treatment. Future studies should furthermore explore the dose and frequency of therapy based on the multiple advantages of UC-MSCs and the mechanism of cartilage repair in dogs.

4.
ACS Nano ; 16(3): 4629-4641, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35226457

RESUMO

Ion-conductive polymers having a well-defined phase-separated structure show the potential application of separating mono- and bivalent ion separation. In this work, three side-chain-type poly(arylene ether sulfone)-based anion exchange membranes (AEMs) have been fabricated to investigate the effect of the stiffness of the polymer backbone within AEMs on the Cl-/NO3- and Cl-/SO42- separation performance. Our investigations via small-angle X-ray scattering (SAXS), positron annihilation, and differential scanning calorimetry (DSC) demonstrate that the as-prepared AEM with a rigid benzimidazole structure in the backbone bears subnanometer ion channels resulting from the arrangement of the rigid polymer backbone. In particular, SAXS results demonstrate that the rigid benzimidazole-containing AEM in the wet state has an ion cluster size of 0.548 nm, which is smaller than that of an AEM with alkyl segments in the backbone (0.760 nm). Thus, in the electrodialysis (ED) process, the former exhibits a superior capacity of separating Cl-/SO42- ions relative to latter. Nevertheless, the benzimidazole-containing AEM shows an inability to separate the Cl-/NO3- ions, which is possibly due to the similar ion size of the two. The higher rotational energy barrier (4.3 × 10-3 Hartree) of benzimidazole units and the smaller polymer matrix free-volume (0.636%) in the AEM significantly contribute to the construction of smaller ion channels. As a result, it is believed that the rigid benzimidazole structure of this kind is a benefit to the construction of stable subnanometer ion channels in the AEM that can selectively separate ions with different sizes.

5.
BMC Vet Res ; 17(1): 272, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384449

RESUMO

BACKGROUND: Exosomes, internal proteins, lipids, and nucleic acids coated by phospholipid bilayer membranes, are one type of small extracellular vesicles, which can mediate cell-cell communication. In recent years, exosomes have gained considerable scientific interest due to their widely applied prospect in the diagnosis and therapeutics of human and animal diseases. In this study, we describe for the first time a feasible method designed to isolate and characterize exosomes from feline plasma, urine and adipose-derived mesenchymal stem cells. RESULTS: Exosomes from feline plasma, urine and adipose-derived mesenchymal stem cells were successfully isolated by differential centrifugation. Quantification and sizing of exosomes were assessed by transmission electron microscopy, flow nano analysis and western blotting. Detected particles showed the normal size (30-100 nm) and morphology described for exosomes, as well as presence of the transmembrane protein (TSG101, CD9, CD63, and CD81) known as exosomal marker. CONCLUSIONS: The results suggest that differential centrifugation is a feasible method for isolation of exosomes from different types of feline samples. Moreover, these exosomes can be used to further diagnosis and therapeutics in veterinary pre-clinical and clinical studies.


Assuntos
Gatos/sangue , Gatos/urina , Exossomos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Feminino , Masculino , Plasma
6.
Membranes (Basel) ; 9(3)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845765

RESUMO

A facile membrane surface modification process for improving permselectivity and antimicrobial property was proposed. A polydopamine (PDA) coating was firstly fabricated on pristine anion exchange membrane (AEM), followed by in situ reduction of Ag without adding any extra reductant. Finally, 2,5-diaminobenzene sulfonic acid (DSA) was grafted onto PDA layer via Michael addition reaction. The as-prepared AEM exhibited improved permselectivity (from 0.60 to 1.43) and effective inhibition of bacterial growth. In addition, the result of the long-term (90-h continuous electrodialysis) test expressed the excellent durability of the modified layer on membrane surface, because the concentration of Cl- and SO4²- in diluted chamber fluctuated ~0.024 and 0.030 mol·L-1 with no distinct decline. The method described in this work makes the full use of multifunctional PDA layer (polymer-like coating, in situ reduction and post-organic reaction), and a rational design of functional AEM was established for better practical application.

7.
RSC Adv ; 9(62): 36374-36385, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35540625

RESUMO

Novel anion exchange membranes with enhanced ion exchange capacity, dimensional stability and alkali stability were prepared by a facile synthesis method. Internal crosslinking networks in the resulting membranes were achieved by reacting chloromethylated polysulfone with 4,4'-trimethylene bis(1-methylpiperidine) (BMP), where BMP was used as both a quaternization reagent and crosslinker without requirement of post-functionalization. In order to evaluate the alkali resistance and dimension stability performance of the resulting membranes, the molar ratio of BMP in the resulting membranes was fixed at four different contents: 40%, 60%, 80% and 100%. The obtained membranes were accordingly denoted as CAPSF-N, in which N = 40, 60, 80 and 100, respectively. Due to the dense internal network structure and spatial conformation of the six-membered rings, the resulting CAPSF-N AEMs showed enhanced dimensional structures (at 60 °C, the water uptakes and swelling ratios of CAPSF-N were 8.42% to 14.84% and 2.32% to 5.93%, respectively, whereas those for the commercial AEM Neosepta AMX were 44.23% and 4.22%, respectively). In addition, after soaking in 1 M KOH solution at 60 °C for 15 days, the modified membranes exhibited excellent alkaline stability. The CAPSF-100 membrane showed the highest alkali stability (retained 85% of its original ion exchange capacity and 84% of its original OH- conduction after the alkaline stability test), whereas the non-crosslinked APSF broke into pieces. Additionally, compared to the commercial Neosepta AMX membrane under the same test conditions, the desalination efficiency of CAPSF-100 was enhanced, and the energy consumption was lower.

8.
Adv Mater ; : e1803163, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29972604

RESUMO

Gd-based T 1 -weighted contrast agents have dominated the magnetic resonance imaging (MRI) contrast agent market for decades. Nevertheless, they are reported to be nephrotoxic and the U.S. Food and Drug Administration has issued a general warning concerning their use. In order to reduce the risk of nephrotoxicity, the MRI performance of the Gd-based T 1 -weighted contrast agents needs to be improved to allow a much lower dosage. In this study, novel dotted core-shell nanoparticles (FeGd-HN3-RGD2) with superhigh r 1 value (70.0 mM-1 s-1 ) and very low r 2 /r 1 ratio (1.98) are developed for high-contrast T 1 -weighted MRI of tumors. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and histological analyses show good biocompatibility of FeGd-HN3-RGD2. Laser scanning confocal microscopy images and flow cytometry demonstrate active targeting to integrin αv ß3 positive tumors. MRI of tumors shows high tumor ΔSNR for FeGd-HN3-RGD2 (477 ± 44%), which is about 6-7-fold higher than that of Magnevist (75 ± 11%). MRI and inductively coupled plasma results further confirm that the accumulation of FeGd-HN3-RGD2 in tumors is higher than liver and spleen due to the RGD2 targeting and small hydrodynamic particle size (8.5 nm), and FeGd-HN3-RGD2 is readily cleared from the body by renal excretion.

9.
Small ; 14(19): e1800094, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29655279

RESUMO

Gold nanoparticle (AuNP) assemblies (GNAs) have attracted attention since enhanced coupling plasmonic resonance (CPR) emerged in the nanogap between coupling AuNPs. For one dimensional GNAs (1D-GNAs), most CPR from the nanogaps could be easily activated by electromagnetic waves and generate drastically enhanced CPR because the nanogaps between coupling AuNPs are linearly distributed in the 1D-GNAs. The reported studies focus on the synthesis of 1D-GNAs and fundamental exploration of CPR. There are still problems which impede further applications in nanomedicine, such as big size (>500 nm), poor water solubility, and/or poor stability. In this study, a kind of 1D flexible caterpillar-like GNAs (CL-GNAs) with ultrasmall nanogaps, good water solubility, and good stability is developed. The CL-GNAs have a flexible structure that can randomly move to change their morphology, which is rarely reported. Numerous ultrasmall nanogaps (<1 nm) are linearly distributed along the structure of CL-GNAs and generate enhanced CPR. The toxicity assessments in vitro and vivo respectively demonstrate that CL-GNAs have a low cytotoxicity and good biocompatibility. The CL-GNAs can be used as an efficient photothermal agent for photothermal therapy, a probe for Raman imaging and photothermal imaging.


Assuntos
Diagnóstico por Imagem , Ouro/química , Hipertermia Induzida , Nanopartículas Metálicas/química , Fototerapia , Animais , Feminino , Humanos , Células MCF-7 , Nanopartículas Metálicas/ultraestrutura , Camundongos Nus , Soroalbumina Bovina/química , Análise Espectral Raman
10.
Biomaterials ; 170: 70-81, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653288

RESUMO

Nanoparticle-based tumor therapies are extensively studied; however, few are capable of improving patient survival time due to premature drug leakage, off target effects, and poor tissue penetration. Previously, we successfully synthesized a novel family of Y1 receptor (Y1R) ligand modified, photoluminescent BPLP nanobubbles and nanoparticles for targeted breast cancer ultrasound imaging; however, increased accumulation could also be observed in the liver, kidney, and spleen, suggesting significant interaction of the particles with macrophages in vivo. Herein, for the first time, we imparted antiphagocytosis capability to Y1R ligand functionalized BPLP-WPU polymeric micelles through the incorporation of a CD47 human glycoprotein based self-peptide. Application of self-peptide modified, DOX loaded micelles in vivo resulted in a 100% survival rate and complete tumor necrosis over 100 days of treatment. In vivo imaging of SPION loaded, self-peptide modified micelles revealed effective targeting to the tumor site while analysis of iron content demonstrated reduced particle accumulation in the liver and kidney, demonstrating reduced macrophage interaction, as well as a 2-fold increase of particles in the tumor. As these results demonstrate, Y1R ligand, self-peptide modified BPLP-WPU micelles are capable of target specific cancer treatment and imaging, making them ideal candidates to improve survival rate and tumor reduction clinically.


Assuntos
Luminescência , Micelas , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fagocitose , Poliuretanos/química , Receptores de Neuropeptídeo Y/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Células MCF-7 , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos Nus , Peptídeos/química , Fagocitose/efeitos dos fármacos , Análise de Sobrevida , Células THP-1 , Fatores de Tempo
11.
ACS Biomater Sci Eng ; 4(3): 1073-1082, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33418791

RESUMO

Detection of circulating tumor cells (CTCs) may be applied for diagnosis of early tumors like a liquid biopsy. However, the sensitivity remains a challenge because CTCs are extremely rare in peripheral blood. In this study, we developed a supersensitive CTC analysis system based on triangular silver nanoprisms (AgNPR) and superparamagnetic iron oxide nanoparticles (SPION) with function of capture, enrichment, detection, and release. The AgNPR was encoded with MBA (i.e., 4-mercaptobenzoic acid) and modified with rBSA (i.e., reductive bovine serum albumin) and FA (i.e., folic acid) generating organic/inorganic composite nanoparticle MBA-AgNPR-rBSA-FA, which has the function of surface-enhanced Raman scattering (SERS). The optimized SERS nanoparticles (i.e., MBA3-AgNPR-rBSA4-FA2) can be utilized for CTC detection in blood samples with high sensitivity and specificity, and the LOD (i.e., limit of detection) reaches to five cells per milliliter. In addition, the SPION was also modified with rBSA and FA generating magnetic nanoparticle SPION-rBSA-FA. Our supersensitive CTC analysis system is composed of MBA3-AgNPR-rBSA4-FA2 and SPION-rBSA-FA nanoparticles, which were applied for capture (via interaction between FA and FRα), enrichment (via magnet), and detection (via SERS) of cancer cells from blood samples. The results demonstrate that our supersensitive CTC analysis system has a better sensitivity and specificity than the SERS nanoparticles alone, and the LOD is up to 1 cell/mL. The flow cytometry and LSCM (i.e., laser scanning confocal microscope) results indicate the CTCs captured, enriched, and isolated by our supersensitive CTC analysis system can also be further released (via adding excessive free FA) for further cell expansion and phenotype identification.

12.
RSC Adv ; 8(24): 13353-13363, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542554

RESUMO

Membrane fouling is an urgent problem needing to be solved for practical application of nanofiltration membranes. In this study, an amphiphilic nanofiltration membrane with hydrophilic domains as well as low surface energy domains was developed, to integrate a fouling-resistant defense mechanism and a fouling-release defense mechanism. A simple and effective two-step surface modification of a polyamide NF membrane was applied. Firstly, triethanolamine (TEOA) with abundant hydrophilic functional groups was grafted to the membrane surface via reacting with the residual acyl chloride group of the nanofiltration membrane, making the nanofiltration membranes more hydrophilic; secondly, the 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS), well-known as a low surface energy material, was covalently grafted on the hydroxyl functional groups through hydrogen bonding. Filtration experiments with model foulants (bovine serum albumin (BSA) protein solution, humic acid solution (HA) and sodium alginate solution (SA)) were performed to estimate the antifouling properties of the newly developed nanofiltration membranes. As a result of surface modification proposed in this study the antifouling properties of an amphiphilic modified F-PA/PSF membrane were enhanced more than 10% compared to the PA/PSF specimen in terms of flux recovery ratio.

13.
ACS Nano ; 11(11): 10992-11004, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29039917

RESUMO

The recently emerged exceedingly small magnetic iron oxide nanoparticles (ES-MIONs) (<5 nm) are promising T1-weighted contrast agents for magnetic resonance imaging (MRI) due to their good biocompatibility compared with Gd-chelates. However, the best particle size of ES-MIONs for T1 imaging is still unknown because the synthesis of ES-MIONs with precise size control to clarify the relationship between the r1 (or r2/r1) and the particle size remains a challenge. In this study, we synthesized ES-MIONs with seven different sizes below 5 nm and found that 3.6 nm is the best particle size for ES-MIONs to be utilized as T1-weighted MR contrast agent. To enhance tumor targetability of theranostic nanoparticles and reduce the nonspecific uptake of nanoparticles by normal healthy cells, we constructed a drug delivery system based on the 3.6 nm ES-MIONs for T1-weighted tumor imaging and chemotherapy. The laser scanning confocal microscopy (LSCM) and flow cytometry analysis results demonstrate that our strategy of precise targeting via exposure or hiding of the targeting ligand RGD2 on demand is feasible. The MR imaging and chemotherapy results on the cancer cells and tumor-bearing mice reinforce that our DOX@ES-MION3@RGD2@mPEG3 nanoparticles are promising for high-resolution T1-weighted MR imaging and precise chemotherapy of tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/uso terapêutico , Imagem de Difusão por Ressonância Magnética , Compostos Férricos/química , Compostos Férricos/uso terapêutico , Humanos , Nanopartículas de Magnetita/química , Camundongos , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Nanomedicina Teranóstica/métodos
14.
ACS Appl Mater Interfaces ; 8(31): 19928-38, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27434820

RESUMO

Circulating tumor cells (CTCs) have received more and more attention in medical biology and clinical practice, especially diagnosis, prognosis, and cancer treatment monitoring. The detection of CTCs within the large number of healthy blood cells is a big challenge due to their rarity, which requires a detection method with supersensitivity and high specificity. In this study, we developed three kinds of new nanoparticles with the function of surface-enhanced Raman scattering (SERS) based on spherical gold nanoparticles (AuNPs), gold nanorods (AuNRs), and gold nanostars (AuNSs) with similar particle size, similar modifications, and different shapes for CTC detection without an enrichment process from the blood. The nanoparticles possess strong SERS signal due to modification of 4-mercaptobenzoic acid (4-MBA) (i.e., Raman reporter molecule), possess excellent specificity due to stabilization of reductive bovine serum albumin (rBSA) to reduce the nonspecific catching or uptake by healthy cells in blood, and possess high sensitivity due to conjugation of folic acid (FA) (i.e., a targeted ligand) to identify CTCs. Under the optimized experimental conditions, the results of detection demonstrate that these nanoparticles could all be utilized for CTC detection without enrichment process from the blood with high specificity, and the AuNS-MBA-rBSA-FA is the best one due to its supersensitivity, whose limit of detection (i.e., 1 cell/mL) is much lower than the currently reported lowest value (5 cells/mL).


Assuntos
Nanopartículas Metálicas , Ouro , Nanotubos , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...