RESUMO
Background: Nasopharyngeal Bordetella pertussis (BP) colonization is common, with about 5% of individuals having PCR evidence of subclinical BP infection on nasal swab, even in countries with high vaccination rates. BP secretes pertussis toxin (PTx). PTx is an adjuvant commonly used to induce autoimmunity in multiple animal models of human disease. Colocalization of PTx and myelin from myelinated nerves in the nasopharynx may lead to host sensitization to myelin with subsequent autoimmune pathology. Methods: C57BL/6J female adult mice were given varied doses and schedules of intranasal PTx, MOG35-55 antigen, or controls to test whether intranasal administration of PTx and myelin oligodendrocyte peptide (MOG35-55) could induce experimental autoimmune encephalomyelitis (EAE) in mice. While we observed systemic cell-mediated immunity against MOG35-55, we did not observe EAE. Unexpectedly, many mice developed alopecia. We systematically investigated this finding. Results: Patchy alopecia developed in 36.4% of mice with the optimized protocol. Pathology consistent with alopecia areata was confirmed histologically by documenting concomitant reduced anagen phase and increased telogen phase hair follicles (HFs) in biopsies from patches of hair loss in mice with alopecia. We also found reduced CD200 staining and increased CD3+T cells surrounding the HFs of mice with alopecia compared to the mice without alopecia, indicating HF Immune Privilege (HFIP) collapse. Systemic immune responses were also found, with increased proportions of activated T cells and B cells, as well as MHCII+ dendritic cells in peripheral blood and/or splenocytes. Finally, in mice initially exposed to intranasal MOG35-55 and PTx in combination, but not to either agent alone, splenocytes were shown to proliferate after in vitro stimulation by MOG35-55. Consistent with prior investigations, PTx exhibited a dose-response effect on immune cell induction and phenotype, with the lowest PTx dose failing to induce autoimmunity, the highest PTx dose suppressing autoimmunity, and intermediate doses optimizing autoimmunity. Conclusions: We propose that this is the first report of an autoimmune disease in an animal model triggered by colocalization of intranasal PTx and autoantigen. This model parallels a natural exposure and potential intranasal sensitization-to-pathology paradigm and supports the plausibility that nasopharyngeal subclinical BP colonization is a cause of alopecia areata.
Assuntos
Adjuvantes Imunológicos , Administração Intranasal , Alopecia em Áreas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Toxina Pertussis , Animais , Toxina Pertussis/imunologia , Toxina Pertussis/administração & dosagem , Camundongos , Feminino , Alopecia em Áreas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Adjuvantes Imunológicos/administração & dosagem , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/administração & dosagem , Bordetella pertussis/imunologia , Coqueluche/imunologiaRESUMO
BACKGROUND: Bordetella pertussis epidemics persist as transmission remains unabated despite high acellular pertussis vaccination rates. BPZE1, a live attenuated intranasal pertussis vaccine, was designed to prevent B pertussis infection and disease. We aimed to assess the immunogenicity and safety of BPZE1 compared with the tetanus-diphtheria-acellular pertussis vaccine (Tdap). METHODS: In this double-blind, phase 2b trial at three research centres in the USA, healthy adults aged 18-50 years were randomly assigned (2:2:1:1) via a permuted block randomisation schedule to receive BPZE1 vaccination followed by BPZE1 attenuated challenge, BPZE1 vaccination followed by placebo challenge, Tdap followed by BPZE1 attenuated challenge, or Tdap followed by placebo challenge. On day 1, lyophilised BPZE1 was reconstituted with sterile water and given intranasally (0·4 mL delivered to each nostril), whereas Tdap was given intramuscularly. To maintain masking, participants in the BPZE1 groups received an intramuscular saline injection, and those in the Tdap groups received intranasal lyophilised placebo buffer. The attenuated challenge took place on day 85. The primary immunogenicity endpoint was the proportion of participants achieving nasal secretory IgA seroconversion against at least one B pertussis antigen on day 29 or day 113. Reactogenicity was assessed up to 7 days after vaccination and challenge, and adverse events were recorded for 28 days after vaccination and challenge. Serious adverse events were monitored throughout the study. This trial is registered with ClinicalTrials.gov, NCT03942406. FINDINGS: Between June 17 and Oct 3, 2019, 458 participants were screened and 280 were randomly assigned to the main cohort: 92 to the BPZE1-BPZE1 group, 92 to the BPZE1-placebo group, 46 to the Tdap-BPZE1 group, and 50 to the Tdap-placebo group. Seroconversion of at least one B pertussis-specific nasal secretory IgA was recorded in 79 (94% [95% CI 87-98]) of 84 participants in the BPZE1-BPZE1 group, 89 (95% [88-98]) of 94 in the BPZE1-placebo group, 38 (90% [77-97]) of 42 in the Tdap-BPZE1 group, and 42 (93% [82-99]) of 45 in the Tdap-placebo group. BPZE1 induced broad and consistent B pertussis-specific mucosal secretory IgA responses, whereas Tdap did not induce consistent mucosal secretory IgA responses. Both vaccines were well tolerated, with mild reactogenicity and no serious adverse events related to study vaccination. INTERPRETATION: BPZE1 induced nasal mucosal immunity and produced functional serum responses. BPZE1 has the potential to avert B pertussis infections, which ultimately could lead to reduced transmission and diminished epidemic cycles. These results should be confirmed in large phase 3 trials. FUNDING: ILiAD Biotechnologies.
Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Difteria , Tétano , Coqueluche , Adulto , Humanos , Difteria/prevenção & controle , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Método Duplo-Cego , Imunoglobulina A Secretora , Tétano/prevenção & controle , Vacinas Atenuadas/imunologia , Coqueluche/prevenção & controle , Adulto Jovem , Pessoa de Meia-Idade , AdolescenteRESUMO
BACKGROUND: BPZE1 is a live, attenuated pertussis vaccine derived from B. pertussis strain Tohama I modified by genetic removal or inactivation of 3 B. pertussis toxins: pertussis toxin, dermonecrotic toxin, and tracheal cytotoxin. This Phase 2a study evaluated the safety and immunogenicity of liquid or lyophilized BPZE1 vaccine administered intranasally by needleless tuberculin syringe or mucosal atomization device (VaxINatorTM) at two dose levels. METHODS: Fifty healthy male and non-pregnant female participants 18-49 years of age were enrolled. Participants were randomized 3:3:3:1 to a single lyophilized dose of 107 colony forming units (CFU) BPZE1, 109 CFU BPZE1, placebo via VaxINator device, or a single liquid dose of 109 CFU BPZE1 via tuberculin syringe. Reactogenicity was assessed for 14 days. Blood was obtained pre-vaccination; on Day 8 (safety); and on Days 15, 29, and 181 (immunogenicity). Nasal wick and swab samples were obtained at baseline and on Days 29 and 181 for assessment of mucosal antibody responses and clearance of BPZE1. RESULTS: Across all groups, 35/50 (70 %) experienced at least one local adverse event (AE) and 31/50 (62 %) experienced at least one systemic AE, with similar AE frequencies observed between the highest 109 CFU BPZE1 and placebo groups. There were no severe or serious AEs during the study. At Day 29, seroconversion (≥2-fold rise from baseline in serum IgG or IgA) to at least 2 pertussis antigens was observed in 73 % in the 109 CFU BPZE1 VaxINator group, 60 % in the 109 CFU BPZE1 group delivered via tuberculin syringe, 27 % of participants in the 107 CFU BPZE1 VaxINator group, and 20 % in the placebo VaxINator group. No participants were colonized with BPZE1 at Day 29 post vaccination. DISCUSSION: Lyophilized BPZE1 vaccine was well tolerated and immunogenic at the highest dose (109 CFU) delivered intranasally by VaxINator device and was not associated with any SAEs or prolonged shedding of BPZE1. Further evaluation of BPZE1 is warranted.
Assuntos
Vacina contra Coqueluche , Coqueluche , Adulto , Masculino , Feminino , Humanos , Vacina contra Coqueluche/efeitos adversos , Bordetella pertussis , Coqueluche/prevenção & controle , Tuberculina , Administração Intranasal , Vacinas Atenuadas , Imunogenicidade da VacinaRESUMO
Current pertussis vaccines protect against disease, but not against colonization by and transmission of Bordetella pertussis, whereas natural infection protects against both. The live attenuated vaccine BPZE1 was developed to mimic immunogenicity of natural infection without causing disease, and in preclinical models protected against pertussis disease and B. pertussis colonization after a single nasal administration. Phase 1 clinical studies showed that BPZE1 is safe and immunogenic in humans when administered as a liquid formulation, stored at ≤-70 °C. Although BPZE1 is stable for two years at ≤-70 °C, a lyophilized formulation stored at ≥5 °C is required for commercialization. The development of a BPZE1 drug product, filled and lyophilized directly in vials, showed that post-lyophilization survival of BPZE1 depended on the time of harvest, the lyophilization buffer, the time between harvest and lyophilization, as well as the lyophilization cycle. The animal component-free process, well defined in terms of harvest, processing and lyophilization, resulted in approximately 20% survival post-lyophilization. The resulting lyophilized drug product was stable for at least two years at -20 °C ± 10 °C, 5 °C ± 3 °C and 22.5 °C ± 2.5 °C and maintained its vaccine potency, as evaluated in a murine protection assay. This manufacturing process thus enables further clinical and commercial development of BPZE1.
RESUMO
BACKGROUND: Long-term protection and herd immunity induced by existing pertussis vaccines are imperfect, and a need therefore exists to develop new pertussis vaccines. This study aimed to investigate the safety, colonisation, and immunogenicity of the new, live attenuated pertussis vaccine, BPZE1, when given intranasally. METHODS: This phase 1b, double-blind, randomised, placebo-controlled, dose-escalation study was done at the phase 1 unit, Karolinska Trial Alliance, Karolinska University Hospital, Stockholm, Sweden. Healthy adults (18-32 years) were screened and included sequentially into three groups of increasing BPZE1 dose strength (107 colony-forming units [CFU], 108 CFU, and 109 CFU), and were randomly assigned (3:1 within each group) to receive vaccine or placebo. Vaccine and placebo were administered in phosphate-buffered saline contained 5% saccharose as 0·4 mL in each nostril. The primary outcome was solicited and unsolicited adverse events between day 0 and day 28. The analysis included all randomised participants who received a vaccine dose. Colonisation with BPZE1 was determined by repeatedly culturing nasopharyngeal aspirates at day 4, day 7, day 11, day 14, day 21, and day 28 after vaccination. Immunogenicity, as serum IgG and IgA responses were assessed at day 0, day 7, day 14, day 21, day 28, 6 months, and 12 months after vaccination. This trial is registered at Clinicaltrials.gov, NCT02453048. FINDINGS: Between Sept 1, 2015, and Feb 3, 2016, 120 participants were assessed for eligibility, 48 of whom were enrolled and randomly assigned (3:1) to receive vaccine or placebo, with 12 participants each in a low-dose, medium-dose, and high-dose vaccine group. Adverse events between day 0 and day 28 were reported by one (8%, 95% CI 0-39) of 12 participants in both the placebo and low-dose groups, and two (17%; 2-48) of 12 participants in both the medium-dose and high-dose groups, including cough of grade 2 or more, oropharyngeal pain, and rhinorrhoea and nasal congestion. During this time, none of the participants experienced any spasmodic cough, difficulties in breathing, or adverse events following immunisation concerning vital signs. The tested doses of BPZE1 or placebo were well tolerated, with no apparent difference in solicited or unsolicited adverse events following immunisation between groups. Colonisation at least once after vaccination was observed in 29 (81%; 68-93) of 36 vaccinated participants. The tested vaccine doses were immunogenic, with increases in serum IgG and IgA titres against the four B pertussis antigens from baseline to 12 months. INTERPRETATION: The tested vaccine was safe, induced a high colonisation rate in an adult population, and was immunogenic at all doses. These findings justify further clinical development of BPZE1 to ultimately be used as a priming vaccine for neonates or a booster vaccine for adolescents and adults, or both. FUNDING: ILiAD Biotechnologies.
Assuntos
Administração Intranasal , Imunogenicidade da Vacina , Vacina contra Coqueluche/imunologia , Vacinação , Vacinas Atenuadas/imunologia , Adulto , Antígenos de Bactérias/imunologia , Bordetella pertussis/imunologia , Método Duplo-Cego , Feminino , Seguimentos , Voluntários Saudáveis , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/efeitos adversos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Coqueluche/microbiologia , Coqueluche/prevenção & controle , Adulto JovemRESUMO
BACKGROUNDThe live attenuated BPZE1 vaccine candidate induces protection against B. pertussis and prevents nasal colonization in animal models. Here we report on the responses in humans receiving a single intranasal administration of BPZE1.METHODSWe performed multiple assays to dissect the immune responses induced in humans (n = 12) receiving BPZE1, with particular emphasis on the magnitude and characteristics of the antibody responses. Such responses were benchmarked to adolescents (n = 12) receiving the complete vaccination program of the currently used acellular pertussis vaccine (aPV). Using immunoproteomics analysis, potentially novel immunogenic B. pertussis antigens were identified.RESULTSAll BPZE1 vaccinees showed robust B. pertussis-specific antibody responses with regard to significant increase in 1 or more of the following parameters: IgG, IgA, and memory B cells to B. pertussis antigens. BPZE1-specific T cells showed a Th1 phenotype, and the IgG exclusively consisted of IgG1 and IgG3. In contrast, all aPV vaccines showed a Th2-biased response. Immunoproteomics profiling revealed that BPZE1 elicited broader and different antibody specificities to B. pertussis antigens as compared with the aPV that primarily induced antibodies to the vaccine antigens. Moreover, BPZE1 was superior at inducing opsonizing antibodies that stimulated ROS production in neutrophils and enhanced bactericidal function, which was in line with the finding that antibodies against adenylate cyclase toxin were only elicited by BPZE1.CONCLUSIONThe breadth of the antibodies, the Th1-type cellular response, and killing mechanisms elicited by BPZE1 may hold prospects of improving vaccine efficacy and protection against B. pertussis transmission.TRIAL REGISTRATIONClinicalTrials.gov NCT02453048, NCT00870350.FUNDINGILiAD Biotechnologies, Swedish Research Council (Vetenskapsrådet), Swedish Heart-Lung Foundation.
Assuntos
Anticorpos Antibacterianos/imunologia , Formação de Anticorpos , Bordetella pertussis/imunologia , Vacina contra Coqueluche/administração & dosagem , Adolescente , Adulto , Linfócitos B/imunologia , Feminino , Humanos , Imunoglobulina G , Masculino , Vacina contra Coqueluche/imunologia , Células Th1/imunologia , Células Th2/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologiaRESUMO
Decades of peer reviewed evidence demonstrate that: 1)Bordetellapertussisand pertussis toxin are potent adjuvants, inducing asthma and allergic sensitization in animal models of human disease, 2)Bordetella pertussisoften colonizes the human nasopharynx, and is well documented in highly pertussis-vaccinated populations and 3) in children, a history of whooping cough increases the risk of asthma and allergic sensitization disease. We build on these observations with six case studies and offer a pertussis-based explanation for the rapid rise in allergic disease in former East Germany following the fall of the Berlin Wall; the current asthma, peanut allergy, and anaphylaxis epidemics in the United States; the correlation between the risk of asthma and gross national income per capita by country; the lower risk of asthma and allergy in children raised on farms; and the reduced risk of atopy with increased family size and later sibling birth order. To organize the evidence for the pertussis hypothesis, we apply the Bradford Hill criteria to the association between Bordetella pertussisand asthma and allergicsensitization disease. We propose that, contrary to conventional wisdom that nasopharyngealBordetella pertussiscolonizing infections are harmless, subclinicalBordetella pertussiscolonization is an important cause of asthma and diseases of allergic sensitization.
Assuntos
Asma/microbiologia , Bordetella pertussis , Hipersensibilidade/microbiologia , Coqueluche/microbiologia , Animais , Asma/complicações , Asma/etiologia , Criança , Pré-Escolar , Alemanha , Humanos , Hipersensibilidade/complicações , Hipersensibilidade/etiologia , Nasofaringe/microbiologia , Hipersensibilidade a Amendoim , Pólen , Risco , Estados Unidos , Coqueluche/complicaçõesRESUMO
Evidence suggests that the resurgence of pertussis in many industrialized countries may result from the failure of current vaccines to prevent nasopharyngeal colonization by Bordetella pertussis, the principal causative agent of whooping cough. Here, we used a baboon model to test the protective potential of the novel, live attenuated pertussis vaccine candidate BPZE1. A single intranasal/intratracheal inoculation of juvenile baboons with BPZE1 resulted in transient nasopharyngeal colonization and induction of immunoglobulin G and immunoglobulin A to all antigens tested, while causing no adverse symptoms or leukocytosis. When BPZE1-vaccinated baboons were challenged with a high dose of a highly virulent B. pertussis isolate, they were fully protected against disease, whereas naive baboons developed illness (with 1 death) and leukocytosis. Total postchallenge nasopharyngeal virulent bacterial burden of vaccinated animals was substantially reduced (0.002%) compared to naive controls, providing promising evidence in nonhuman primates that BPZE1 protects against both pertussis disease and B. pertussis infection.
Assuntos
Papio/imunologia , Vacina contra Coqueluche/administração & dosagem , Coqueluche/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/sangue , Bordetella pertussis , Modelos Animais de Doenças , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Modelos Moleculares , Papio/microbiologia , Vacina contra Coqueluche/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Coqueluche/imunologiaRESUMO
While a number of endogenous risk factors including age and genetics are established for Alzheimer's disease (AD), identification of acquired, potentially preventable or treatable causes, remains limited. In this paper, we review three epidemiologic case studies and present extensive biologic, immunologic and anatomic evidence to support a novel hypothesis that Bordetella pertussis (BP), the bacterium better known to cause whooping cough, is an important potential cause of AD. Cross-cultural documentation of nasopharyngeal subclinical BP colonization reflecting BP-specific mucosal immunodeficiency, proximate anatomy of intranasal mucosal surfaces to central nervous system (CNS) olfactory pathways, and mechanisms by which BP and BP toxin account for all hallmark pathology of AD are reviewed, substantiating biologic plausibility. Notably, respiratory BP infection and BP toxin secreted from subclinical BP colonization can account for the initiation and accumulation of amyloid ß plaques and tau tangles. Additional mechanisms consistent with the immunobiologic effects of subclinical BP colonization include microglial activation and inflammation, atrophy and neurodegeneration, excitotoxicity, distinctive anatomic distribution and sequential spread of disease, impaired glucose utilization, and other characteristic CNS pathology of AD. We conclude by assessing the evidence for causation against the Bradford Hill criteria, and advocate for further investigation into the potential role of BP in the etiology of AD.
Assuntos
Doença de Alzheimer/etiologia , Bordetella pertussis/fisiologia , Coqueluche/complicações , Coqueluche/microbiologia , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Predisposição Genética para Doença , Ácido Glutâmico/metabolismo , Humanos , Incidência , Nasofaringe/imunologia , Nasofaringe/metabolismo , Nasofaringe/microbiologia , Neurônios/metabolismo , Estresse Oxidativo , Toxina Pertussis/imunologia , Toxina Pertussis/metabolismo , Vacina contra Coqueluche/imunologia , Coqueluche/diagnóstico , Coqueluche/prevenção & controle , Via de Sinalização WntRESUMO
It is established that (1) subclinical Bordetella pertussis colonization of the nasopharynx persists in highly vaccinated populations, and (2) B. pertussis toxin is a potent adjuvant that, when co-administered with neural antigens, induces neuropathology in experimental autoimmune encephalomyelitis, the principle animal model of multiple sclerosis. Building on these observations with supporting epidemiologic and biologic evidence, we propose that, contrary to conventional wisdom that subclinical pertussis infections are innocuous to hosts, B. pertussis colonization is an important cause of multiple sclerosis.