Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39198580

RESUMO

Neuromodulation is increasingly becoming a therapeutic option for treatment resistant psychiatric disorders. These non-invasive and invasive therapies are still being refined but are clinically effective and, in some cases, provide sustained symptom reduction. Neuromodulation relies on changing activity within a specific brain region or circuit, but the precise mechanisms of action of these therapies, is unclear. Here we review work in both humans and animals that has provided insight into how therapies such as deep brain and transcranial magnetic stimulation alter neural activity across the brain. We focus on studies that have combined neuromodulation with neuroimaging such as PET and MRI as these measures provide detailed information about the distributed networks that are modulated and thus insight into both the mechanisms of action of neuromodulation but also potentially the basis of psychiatric disorders. Further we highlight work in nonhuman primates that has revealed how neuromodulation changes neural activity at different scales from single neuron activity to functional connectivity, providing key insight into how neuromodulation influences the brain. Ultimately, these studies highlight the value of combining neuromodulation with neuroimaging to reveal the mechanisms through which these treatments influence the brain, knowledge vital for refining targeted neuromodulation therapies for psychiatric disorders.

2.
bioRxiv ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39026728

RESUMO

Macaque ventral frontal cortex is comprised of a set of anatomically heterogeneous and highly interconnected areas. Collectively these areas have been implicated in many higher-level affective and cognitive processes, most notably the adaptive control of decision-making. Despite this appreciation, little is known about how subdivisions of ventral frontal cortex dynamically interact with each other during decision-making. Here we assessed functional interactions between areas by analyzing the activity of thousands of single neurons recorded from eight anatomically defined subdivisions of ventral frontal cortex in macaques performing a visually guided two-choice probabilistic task for different fruit juices. We found that the onset of stimuli and reward delivery globally increased communication between all parts of ventral frontal cortex. Inter-areal communication was, however, temporally specific, occurred through unique activity subspaces between areas, and depended on the encoding of decision variables. In particular, areas 12l and 12o showed the highest connectivity with other areas while being more likely to receive information from other parts of ventral frontal cortex than to send it. This pattern of functional connectivity suggests a role for these two areas in integrating diverse sources of information during decision processes. Taken together, our work reveals the specific patterns of interareal communication between anatomically connected subdivisions of ventral frontal cortex that are dynamically engaged during decision-making.

3.
Curr Biol ; 34(14): 3249-3257.e3, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38964318

RESUMO

Basolateral amygdala (BLA) is a key hub for affect in the brain,1,2,3 and dysfunction within this area contributes to a host of psychiatric disorders.4,5 BLA is extensively and reciprocally interconnected with frontal cortex,6,7,8,9 and some aspects of its function are evolutionarily conserved across rodents, anthropoid primates, and humans.10 Neuron density in BLA is substantially lower in primates compared to murine rodents,11 and frontal cortex (FC) is dramatically expanded in primates, particularly the more anterior granular and dysgranular areas.12,13,14 Yet, how these anatomical differences influence the projection patterns of single BLA neurons to frontal cortex across rodents and primates is unknown. Using a barcoded connectomic approach, we assessed the single BLA neuron connections to frontal cortex in mice and macaques. We found that BLA neurons are more likely to project to multiple distinct parts of FC in mice than in macaques. Further, while single BLA neuron projections to nucleus accumbens were similarly organized in mice and macaques, BLA-FC connections differed substantially. Notably, BLA connections to subcallosal anterior cingulate cortex (scACC) in macaques were least likely to branch to other medial frontal cortex areas compared to perigenual ACC (pgACC). This pattern of connections was reversed in the mouse homologues of these areas, infralimbic and prelimbic cortex (IL and PL), mirroring functional differences between rodents and non-human primates. Taken together, these results indicate that BLA connections to FC are not linearly scaled from mice to macaques and instead the organization of single-neuron BLA connections is distinct between these species.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Conectoma , Lobo Frontal , Neurônios , Animais , Camundongos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Neurônios/fisiologia , Masculino , Lobo Frontal/fisiologia , Camundongos Endogâmicos C57BL , Macaca mulatta/fisiologia , Vias Neurais/fisiologia , Feminino
4.
J Neurosci ; 44(35)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38991790

RESUMO

The ventral frontal cortex (VFC) in macaques is involved in many affective and cognitive processes and has a key role in flexibly guiding reward-based decision-making. VFC is composed of a set of anatomically distinct subdivisions that are within the orbitofrontal cortex, ventrolateral prefrontal cortex, and anterior insula. In part, because prior studies have lacked the resolution to test for differences, it is unclear if neural representations related to decision-making are dissociable across these subdivisions. Here we recorded the activity of thousands of neurons within eight anatomically defined subdivisions of VFC in male macaque monkeys performing a two-choice probabilistic task for different fruit juice outcomes. We found substantial variation in the encoding of decision variables across these eight subdivisions. Notably, ventrolateral Area 12l was unique relative to the other areas that we recorded from as the activity of single neurons integrated multiple attributes when monkeys evaluated the different choice options. Activity within Area 12o, in contrast, more closely represented reward probability and whether reward was received on a given trial. Orbitofrontal Area 11m/l contained more specific representations of the quality of the outcome that could be earned later on. We also found that reward delivery encoding was highly distributed across all VFC subdivisions, while the properties of the reward, such as its flavor, were more strongly represented in Areas 11m/l and 13m. Taken together, our work reveals the diversity of encoding within the various anatomically distinct subdivisions of VFC in primates.


Assuntos
Tomada de Decisões , Lobo Frontal , Macaca mulatta , Recompensa , Animais , Masculino , Tomada de Decisões/fisiologia , Lobo Frontal/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento de Escolha/fisiologia , Mapeamento Encefálico
5.
Cell Rep ; 43(6): 114355, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870010

RESUMO

Beliefs-attitudes toward some state of the environment-guide action selection and should be robust to variability but sensitive to meaningful change. Beliefs about volatility (expectation of change) are associated with paranoia in humans, but the brain regions responsible for volatility beliefs remain unknown. The orbitofrontal cortex (OFC) is central to adaptive behavior, whereas the magnocellular mediodorsal thalamus (MDmc) is essential for arbitrating between perceptions and action policies. We assessed belief updating in a three-choice probabilistic reversal learning task following excitotoxic lesions of the MDmc (n = 3) or OFC (n = 3) and compared performance with that of unoperated monkeys (n = 14). Computational analyses indicated a double dissociation: MDmc, but not OFC, lesions were associated with erratic switching behavior and heightened volatility belief (as in paranoia in humans), whereas OFC, but not MDmc, lesions were associated with increased lose-stay behavior and reward learning rates. Given the consilience across species and models, these results have implications for understanding paranoia.


Assuntos
Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/patologia , Masculino , Transtornos Paranoides , Macaca mulatta , Humanos , Tálamo/patologia , Recompensa , Feminino , Cultura
6.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915600

RESUMO

Deep brain stimulation (DBS) is an emerging therapeutic option for treatment resistant neurological and psychiatric disorders, most notably depression. Despite this, little is known about the anatomical and functional mechanisms that underlie this therapy. Here we targeted stimulation to the white matter adjacent to the subcallosal anterior cingulate cortex (SCC-DBS) in macaques, modeling the location in the brain proven effective for depression. We demonstrate that SCC-DBS has a selective effect on white matter macro- and micro-structure in the cingulum bundle distant to where stimulation was delivered. SCC-DBS also decreased functional connectivity between subcallosal and posterior cingulate cortex, two areas linked by the cingulum bundle and implicated in depression. Our data reveal that white matter remodeling as well as functional effects contribute to DBS's therapeutic efficacy.

7.
Nat Commun ; 15(1): 4669, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821963

RESUMO

Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and the underlying patterns of neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the amygdala of two male macaques. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5 Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-modal approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.


Assuntos
Tonsila do Cerebelo , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Imageamento por Ressonância Magnética/métodos , Masculino , Animais , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Vias Neurais/fisiologia , Lobo Frontal/fisiologia , Lobo Frontal/diagnóstico por imagem , Sistema Límbico/fisiologia , Sistema Límbico/diagnóstico por imagem , Mapeamento Encefálico/métodos , Descanso/fisiologia , Macaca mulatta , Drogas Desenhadas/farmacologia , Clozapina/análogos & derivados , Clozapina/farmacologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
8.
Neuron ; 112(13): 2241-2256.e8, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38640933

RESUMO

Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in the orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to guide choice behavior. Here, we report that instead of a single integrated valuation system in the OFC, another complementary one is centered in the ventrolateral prefrontal cortex (vlPFC) in macaques. Specifically, we found that the OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into value representations in these areas. In addition, the vlPFC, but not the OFC, represented the probability of receiving the available outcome flavors separately, with the difference between these representations reflecting the degree of preference for each flavor. Thus, both the vlPFC and OFC exhibit dissociable but complementary representations of subjective value, both of which are necessary for decision-making.


Assuntos
Comportamento de Escolha , Macaca mulatta , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Comportamento de Escolha/fisiologia , Masculino , Sistema Límbico/fisiologia , Preferências Alimentares/fisiologia , Vias Neurais/fisiologia , Tomada de Decisões/fisiologia
9.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559221

RESUMO

Ventral frontal cortex (VFC) in macaques is involved in many affective and cognitive processes and has a key role in flexibly guiding reward-based decision-making. VFC is composed of a set of anatomically distinct subdivisions that are within the orbitofrontal cortex, ventrolateral prefrontal cortex, and anterior insula. In part, because prior studies have lacked the resolution to test for differences, it is unclear if neural representations related to decision-making are dissociable across these subdivisions. Here we recorded the activity of thousands of neurons within eight anatomically defined subregions of VFC in macaque monkeys performing a two-choice probabilistic task for different fruit juices outcomes. We found substantial variation in the encoding of decision variables across these eight subdivisions. Notably, ventrolateral subdivision 12l was unique relative to the other areas that we recorded from as the activity of single neurons integrated multiple attributes when monkeys evaluated the different choice options. Activity within 12o, by contrast, more closely represented reward probability and whether reward was received on a given trial. Orbitofrontal area 11m/l contained more specific representations of the quality of the outcome that could be earned later on. We also found that reward delivery encoding was highly distributed across all VFC subregions, while the properties of the reward, such as its flavor, were more strongly represented in areas 11m/l and 13m. Taken together, our work reveals the diversity of encoding within the various anatomically distinct subdivisions of VFC in primates.

10.
Neuron ; 111(20): 3307-3320.e5, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37857091

RESUMO

Basolateral amygdala (BLA) projects widely across the macaque frontal cortex, and amygdalo-frontal projections are critical for appropriate emotional responding and decision making. While it is appreciated that single BLA neurons branch and project to multiple areas in frontal cortex, the organization and frequency of this branching has yet to be fully characterized. Here, we determined the projection patterns of more than 3,000 macaque BLA neurons. We found that one-third of BLA neurons had two or more distinct projection targets in frontal cortex and subcortical structures. The patterns of single BLA neuron projections to multiple areas were organized into repeating motifs that targeted distinct sets of areas in medial and ventral frontal cortex, indicative of separable BLA networks. Our findings begin to reveal the rich structure of single-neuron connections in the non-human primate brain, providing a neuroanatomical basis for the role of BLA in coordinating brain-wide responses to valent stimuli.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Macaca , Vias Neurais/fisiologia , Lobo Frontal , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia
11.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745436

RESUMO

Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the macaque amygdala and activated them with a highly selective and potent DREADD agonist, deschloroclozapine. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Interestingly, activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-disciplinary approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.

12.
Neuron ; 111(22): 3668-3682.e5, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586366

RESUMO

Functional neuroimaging studies indicate that interconnected parts of the subcallosal anterior cingulate cortex (ACC), striatum, and amygdala play a fundamental role in affect in health and disease. Yet, although the patterns of neural activity engaged in the striatum and amygdala during affective processing are well established, especially during reward anticipation, less is known about subcallosal ACC. Here, we recorded neural activity in non-human primate subcallosal ACC and compared this with interconnected parts of the basolateral amygdala and rostromedial striatum while macaque monkeys performed reward-based tasks. Applying multiple analysis approaches, we found that neurons in subcallosal ACC and rostromedial striatum preferentially signal anticipated reward using short bursts of activity that form temporally specific patterns. By contrast, the basolateral amygdala uses a mixture of both temporally specific and more sustained patterns of activity to signal anticipated reward. Thus, dynamic patterns of neural activity across populations of neurons are engaged in affect, especially in subcallosal ACC.


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Animais , Tonsila do Cerebelo/fisiologia , Neuroimagem Funcional , Neurônios/fisiologia , Recompensa , Giro do Cíngulo/fisiologia , Imageamento por Ressonância Magnética/métodos , Antecipação Psicológica/fisiologia
13.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214895

RESUMO

Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to drive choice behavior. Here we report that instead of a single integrated valuation system in OFC, another separate one is centered in ventrolateral prefrontal cortex (vlPFC) in macaque monkeys. Specifically, we found that OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into these two aspects of subjective valuation. In addition, vlPFC, but not OFC, represented the outcome probability for the two options separately, with the difference between these representations reflecting the degree of preference. Thus, there are at least two separable valuation systems that work in concert to guide choices and that both are biased by preferences.

14.
bioRxiv ; 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711708

RESUMO

The basolateral amygdala (BLA) projects widely across the macaque frontal cortex1-4, and amygdalo-frontal projections are critical for optimal emotional responding5 and decision-making6. Yet, little is known about the single-neuron architecture of these projections: namely, whether single BLA neurons project to multiple parts of the frontal cortex. Here, we use MAPseq7 to determine the projection patterns of over 3000 macaque BLA neurons. We found that one-third of BLA neurons have two or more distinct targets in parts of frontal cortex and of subcortical structures. Further, we reveal non-random structure within these branching patterns such that neurons with four targets are more frequently observed than those with two or three, indicative of widespread networks. Consequently, these multi-target single neurons form distinct networks within medial and ventral frontal cortex consistent with their known functions in regulating mood and decision-making. Additionally, we show that branching patterns of single neurons shape functional networks in the brain as assessed by fMRI-based functional connectivity. These results provide a neuroanatomical basis for the role of the BLA in coordinating brain-wide responses to valent stimuli8 and highlight the importance of high-resolution neuroanatomical data for understanding functional networks in the brain.

15.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187599

RESUMO

The basolateral amygdala (BLA) projects to the frontal cortex (FC) in both rodents and primates, but the comparative organization of single-neuron BLA-FC projections is unknown. Using a barcoded connectomic approach, we found that BLA neurons are more likely to project to multiple distinct parts of FC in mice than in macaques. Further, while single BLA neuron projections to nucleus accumbens are similarly organized in mice and macaques, BLA-FC connections differ.

16.
bioRxiv ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38234858

RESUMO

The neurotransmitter dopamine (DA) has a multifaceted role in healthy and disordered brains through its action on multiple subtypes of dopaminergic receptors. How modulation of these receptors controls behavior by altering connectivity across intrinsic brain-wide networks remains elusive. Here we performed parallel behavioral and resting-state functional MRI experiments after administration of two different DA receptor antagonists in macaque monkeys. Systemic administration of SCH-23390 (D1 antagonist) disrupted probabilistic learning when subjects had to learn new stimulus-reward associations and diminished functional connectivity (FC) in cortico-cortical and fronto-striatal connections. By contrast, haloperidol (D2 antagonist) improved learning and broadly enhanced FC in cortical connections. Further comparison between the effect of SCH-23390/haloperidol on behavioral and resting-state FC revealed specific cortical and subcortical networks associated with the cognitive and motivational effects of DA, respectively. Thus, we reveal the distinct brain-wide networks that are associated with the dopaminergic control of learning and motivation via DA receptors.

17.
J Neurosci ; 42(29): 5705-5716, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35701162

RESUMO

Chemogenetic techniques, such as designer receptors exclusively activated by designer drugs (DREADDs), enable transient, reversible, and minimally invasive manipulation of neural activity in vivo Their development in nonhuman primates is essential for uncovering neural circuits contributing to cognitive functions and their translation to humans. One key issue that has delayed the development of chemogenetic techniques in primates is the lack of an accessible drug-screening method. Here, we use resting-state fMRI, a noninvasive neuroimaging tool, to assess the impact of deschloroclozapine (DCZ) on brainwide resting-state functional connectivity in 7 rhesus macaques (6 males and 1 female) without DREADDs. We found that systemic administration of 0.1 mg/kg DCZ did not alter the resting-state functional connectivity. Conversely, 0.3 mg/kg of DCZ was associated with a prominent increase in functional connectivity that was mainly confined to the connections of frontal regions. Additional behavioral tests confirmed a negligible impact of 0.1 mg/kg DCZ on socio-emotional behaviors as well as on reaction time in a probabilistic learning task; 0.3 mg/kg DCZ did, however, slow responses in the probabilistic learning task, suggesting attentional or motivational deficits associated with hyperconnectivity in fronto-temporo-parietal networks. Our study highlights both the excellent selectivity of DCZ as a DREADD actuator, and the side effects of its excess dosage. The results demonstrate the translational value of resting-state fMRI as a drug-screening tool to accelerate the development of chemogenetics in primates.SIGNIFICANCE STATEMENT Chemogenetics, such as designer receptors exclusively activated by designer drugs (DREADDs), can afford control over neural activity with unprecedented spatiotemporal resolution. Accelerating the translation of chemogenetic neuromodulation from rodents to primates requires an approach to screen novel DREADD actuators in vivo Here, we assessed brainwide activity in response to a DREADD actuator deschloroclozapine (DCZ) using resting-state fMRI in macaque monkeys. We demonstrated that low-dose DCZ (0.1 mg/kg) did not change whole-brain functional connectivity or affective behaviors, while a higher dose (0.3 mg/kg) altered frontal functional connectivity and slowed response in a learning task. Our study highlights the excellent selectivity of DCZ at proper dosing, and demonstrates the utility of resting-state fMRI to screen novel chemogenetic actuators in primates.


Assuntos
Drogas Desenhadas , Imageamento por Ressonância Magnética , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Drogas Desenhadas/farmacologia , Feminino , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Masculino
18.
Neuropsychopharmacology ; 47(1): 134-146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34408279

RESUMO

Efficient foraging is essential to survival and depends on frontal cortex in mammals. Because of its role in psychiatric disorders, frontal cortex and its contributions to reward procurement have been studied extensively in both rodents and non-human primates. How frontal cortex of these animal models compares is a source of intense debate. Here we argue that translating findings from rodents to non-human primates requires an appreciation of both the niche in which each animal forages as well as the similarities in frontal cortex anatomy and function. Consequently, we highlight similarities and differences in behavior and anatomy, before focusing on points of convergence in how parts of frontal cortex contribute to distinct aspects of foraging in rats and macaques, more specifically. In doing so, our aim is to emphasize where translation of frontal cortex function between species is clearer, where there is divergence, and where future work should focus. We finish by highlighting aspects of foraging for which have received less attention but we believe are critical to uncovering how frontal cortex promotes survival in each species.


Assuntos
Lobo Frontal , Recompensa , Animais , Atenção , Ratos
19.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452993

RESUMO

Decision-making and representations of arousal are intimately linked. Behavioral investigations have classically shown that either too little or too much bodily arousal is detrimental to decision-making, indicating that there is an inverted "U" relationship between bodily arousal and performance. How these processes interact at the level of single neurons as well as the neural circuits involved are unclear. Here we recorded neural activity from orbitofrontal cortex (OFC) and dorsal anterior cingulate cortex (dACC) of macaque monkeys while they made reward-guided decisions. Heart rate (HR) was also recorded and used as a proxy for bodily arousal. Recordings were made both before and after subjects received excitotoxic lesions of the bilateral amygdala. In intact monkeys, higher HR facilitated reaction times (RTs). Concurrently, a set of neurons in OFC and dACC selectively encoded trial-by-trial variations in HR independent of reward value. After amygdala lesions, HR increased, and the relationship between HR and RTs was altered. Concurrent with this change, there was an increase in the proportion of dACC neurons encoding HR. Applying a population-coding analysis, we show that after bilateral amygdala lesions, the balance of encoding in dACC is skewed away from signaling either reward value or choice direction toward HR coding around the time that choices are made. Taken together, the present results provide insight into how bodily arousal and decision-making are signaled in frontal cortex.


Assuntos
Nível de Alerta/fisiologia , Tomada de Decisões/fisiologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiologia , Animais , Eletrocardiografia , Giro do Cíngulo/citologia , Frequência Cardíaca , Macaca mulatta , Masculino , Córtex Pré-Frontal/citologia , Recompensa
20.
Behav Neurosci ; 135(2): 301-311, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34060882

RESUMO

For almost a century, researchers have puzzled over how the orbitofrontal cortex (OFC) contributes to behavior. Our understanding of the functions of this area has evolved as each new finding and piece of information is added to complete the larger picture. Despite this, the full picture of OFC function is incomplete. Here we begin by reviewing recent (and not so recent) theories of how OFC contributes to behavior. We then go onto highlight emerging work that has helped to broaden perspectives on the role that OFC plays in contingent learning, interoception, and social behavior. How OFC contributes to these aspects of behavior is not well understood. Here we argue that only by establishing where and how these and other functions fit within the puzzle of OFC, either alone or as part of larger brain-wide circuits, will we be able to fully realize the functions of this area. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Cognição , Córtex Pré-Frontal , Aprendizagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...