Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 20242024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865431

RESUMO

Molecular identification of micro- and macroorganisms based on nuclear markers has revolutionized our understanding of their taxonomy, phylogeny and ecology. Today, research on the diversity of eukaryotes in global ecosystems heavily relies on nuclear ribosomal RNA (rRNA) markers. Here, we present the research community-curated reference database EUKARYOME for nuclear ribosomal 18S rRNA, internal transcribed spacer (ITS) and 28S rRNA markers for all eukaryotes, including metazoans (animals), protists, fungi and plants. It is particularly useful for the identification of arbuscular mycorrhizal fungi as it bridges the four commonly used molecular markers-ITS1, ITS2, 18S V4-V5 and 28S D1-D2 subregions. The key benefits of this database over other annotated reference sequence databases are that it is not restricted to certain taxonomic groups and it includes all rRNA markers. EUKARYOME also offers a number of reference long-read sequences that are derived from (meta)genomic and (meta)barcoding-a unique feature that can be used for taxonomic identification and chimera control of third-generation, long-read, high-throughput sequencing data. Taxonomic assignments of rRNA genes in the database are verified based on phylogenetic approaches. The reference datasets are available in multiple formats from the project homepage, http://www.eukaryome.org.


Assuntos
Eucariotos , Eucariotos/genética , RNA Ribossômico 18S/genética , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Animais , Genes de RNAr/genética , Filogenia
2.
J Eukaryot Microbiol ; 71(1): e13013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38059499

RESUMO

Thomas Cavalier-Smith, born in London, U.K., on October 21, 1942, was a Professor of Evolutionary Biology in the Department of Zoology at the University of Oxford at the time of his death on March 19, 2021. Credited with at least 235 research works and over 20,000 citations, Cavalier-Smith was a well-known and widely respected scientist who took a bold and detailed approach to understanding major transitions in evolution, including the role of endosymbiosis. He was noted for his willingness to question theories and constantly accumulate and evaluate data, motivated by science for the sake of science. This paper reviews Thomas Cavalier-Smith's major accomplishments, examines his theoretical approaches, and provides highlights from the "Tree of Life Symposium" sponsored by the International Society of Protistologists (ISOP) and the International Society of Evolutionary Protistology (ISEP) on June 21, 2021, to celebrate Tom's life and work.


Assuntos
Simbiose , Zoologia
3.
Eur J Protistol ; 90: 126008, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37536234

RESUMO

Gregarine apicomplexans, a group of single celled organisms, inhabit the extracellular spaces of most invertebrate species. The nature of the gregarine-host interactions is not yet fully resolved, mutualistic, commensal and parasitic life forms have been recorded. In the extreme arid environment of the Atacama Desert, only a few groups of invertebrates hosting gregarines such as darkling beetles (Tenebrionidae) were able to adapt, providing an unparalleled opportunity to study co-evolutionary diversification. Here, we describe one novel gregarine genus comprising one species, Atacamagregarina paposa gen. et sp. nov., and a new species, Xiphocephalus ovatus sp. nov. (Apicomplexa: Eugregarinoridea, Stylocephalidae), found in the tenebrionid beetle genera Scotobius (Tenebrioninae, Scotobiini) and Psectrascelis intricaticollis ovata (Pimeliinae, Nycteliini), respectively. In the phylogenetic analysis based on SSU rDNA, Atacamgregarina paposa representing the new genus is basal, forming a separate clade with terrestrial gregarines specific for North American darkling beetles.


Assuntos
Apicomplexa , Besouros , Animais , Besouros/genética , Besouros/parasitologia , Filogenia , Evolução Biológica , Apicomplexa/genética , DNA Ribossômico/genética
4.
Curr Biol ; 33(12): 2449-2464.e8, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267944

RESUMO

Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.


Assuntos
Blastocystis , Microbioma Gastrointestinal , Animais , Humanos , Blastocystis/genética , Microbioma Gastrointestinal/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organelas/metabolismo , Eucariotos
5.
Int J Parasitol Parasites Wildl ; 20: 79-88, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36688078

RESUMO

The invasive raccoon (Procyon lotor) is an abundant carnivore and considered as an important potential vector of infectious diseases and parasites in Europe. Raccoons show a broad, opportunistic, omnivorous food spectrum. Food supply and habitat quality in urban areas are very attractive for the generalist raccoon. This inevitably leads to increased interaction with humans, domestic animals and livestock, making the raccoon a potentially suitable zoonosis vector. In its autochthonous range, especially in the Eastern and Midwestern United States, the raccoon has been studied very intensively since the beginning of the 20th century. Whereas, basic field biology and parasitology studies in Germany and Europe are lacking and have only been conducted sporadically, regionally and on small sample sizes. In the presented study 234 raccoons from central Germany were comprehensively examined for their metazoan parasite fauna. The present study shows for the first time an extremely diverse parasite fauna in raccoons outside their native range and proves their essential role as intermediate hosts and hosts for ecto- and endoparasites. A total of 23 different parasite species were identified, five of which are human pathogens, 14 of which are new for the parasite fauna of raccoons in Europe. The human pathogenic raccoon roundworm Baylisascaris procyonis is the most common parasite species in this study, with a prevalence of up to 95%. The digenetic trematode Plagiorchis muris, another human pathogenic parasite species, was detected for the first time in raccoons. The ongoing spread of invasive carnivores and the associated spread and transmission of their parasites and other pathogens increases the potential health risk of wild and farmed animals as well as humans. An increase in parasitic diseases in humans (e.g. raccoon roundworm) is to be expected, especially in urban areas, where raccoons are becoming more and more abundant.

6.
J Eukaryot Microbiol ; 70(1): e12932, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35711085

RESUMO

Coinfections of two or more parasites within one host are more of a rule than an exception in nature. Interactions between coinfecting parasites can greatly affect their abundance and prevalence. Characteristics of the host, such as genetic diversity, can also affect the infection dynamics of coinfecting parasites. Here, we investigate for the first time the association of coinfection patterns of two marine apicomplexans, Rhytidocystis sp. and Selenidium pygospionis, with the genetic diversity of their host, the polychaete Pygospio elegans, from natural populations. Host genetic diversity was determined with seven microsatellite loci and summarized as allelic richness, inbreeding coefficient, and individual heterozygosity. We detected nonsignificant correlations between infection loads and both individual host heterozygosity and population genetic diversity. Prevalence and infection load of Rhytidocystis sp. were higher than those of S. pygospionis, and both varied spatially. Coinfections were common, and almost all hosts infected by S. pygospionis were also infected by Rhytidocystis sp. Rhytidocystis sp. infection load was significantly higher in dual infections. Our results suggest that factors other than host genetic diversity might be more important in marine apicomplexan infection patterns and experimental approaches would be needed to further determine how interactions between the apicomplexans and their host influence infection.


Assuntos
Apicomplexa , Coinfecção , Humanos , Apicomplexa/genética , Variação Genética
7.
Trends Parasitol ; 37(10): 875-889, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34158247

RESUMO

There is a large diversity of eukaryotic symbionts of copepods, dominated by epizootic protists such as ciliates, and metazoan parasites. Eukaryotic endoparasites, copepod-associated bacteria, and viruses are less well known, partly due to technical limitations. However, new molecular techniques, combined with a range of other approaches, provide a complementary toolkit for understanding the complete symbiome of copepods and how the symbiome relates to their ecological roles, relationships with other biota, and responses to environmental change. In this review we provide the most complete overview of the copepod symbiome to date, including microeukaryotes, metazoan parasites, bacteria, and viruses, and provide extensive literature databases to inform future studies.


Assuntos
Copépodes , Simbiose , Animais , Copépodes/microbiologia , Copépodes/parasitologia , Copépodes/virologia , Ecossistema , Eucariotos/genética , Microbiota/genética
8.
BMC Biol ; 19(1): 77, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863338

RESUMO

BACKGROUND: Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS: Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS: Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.


Assuntos
Apicomplexa , Mitocôndrias , Animais , Apicomplexa/genética , Humanos , Mitocôndrias/genética , Filogenia , Análise de Célula Única , Transcriptoma
9.
Parasit Vectors ; 13(1): 62, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051019

RESUMO

BACKGROUND: Red Vent Syndrome (RVS), a haemorrhagic inflammation of the vent region in Atlantic salmon, is associated with high abundance of Anisakis simplex (s.s.) third-stage larvae (L3) in the vent region. Despite evidence suggesting that increasing A. simplex (s.s.) intensity is a causative factor in RVS aetiology, the definitive cause remains unclear. METHODS: A total of 117 Atlantic salmon were sampled from commercial fisheries on the East, West, and North coasts of Scotland and examined for ascaridoid parasites. Genetic identification of a subsample of Anisakis larvae was performed using the internal transcribed spacer (ITS) region of ribosomal DNA. To assess the extent of differentiation of feeding grounds and dietary composition, stable isotope analysis of carbon and nitrogen was carried out on Atlantic salmon muscle tissue. RESULTS: In the present study, the obtained ITS rDNA sequences matched A. simplex (s.s.) sequences deposited in GenBank at 99-100%. Not all isolated larvae (n = 30,406) were genetically identified. Therefore, the morphotype found in this study is referred to as A. simplex (sensu lato). Anisakis simplex (s.l.) was the most prevalent (100%) nematode with the highest mean intensity (259.9 ± 197.3), in comparison to Hysterothylacium aduncum (66.7%, 6.4 ± 10.2) and Pseudoterranova decipiens (s.l.) (14.5%, 1.4 ± 0.6). The mean intensity of A. simplex (s.l.) represents a four-fold increase compared to published data (63.6 ± 31.9) from salmon captured in Scotland in 2009. Significant positive correlations between A. simplex (s.l.) larvae intensities from the body and the vent suggest that they play a role in the emergence of RVS. The lack of a significant variation in stable isotope ratios of Atlantic salmon indicates that diet or feeding ground are not driving regional differences in A. simplex (s.l.) intensities. CONCLUSIONS: This paper presents the most recent survey for ascaridoid parasites of wild Atlantic salmon from three coastal regions in Scotland. A significant rise in A. simplex (s.l.) intensity could potentially increase both natural mortality rates of Atlantic salmon and possible risks for salmon consumers due to the known zoonotic role of A. simplex (s.s.) and A. pegreffii within the A. simplex (s.l.) species complex.


Assuntos
Anisaquíase/veterinária , Salmo salar/parasitologia , Alimentos Marinhos/parasitologia , Animais , Anisaquíase/diagnóstico , Anisakis/genética , Anisakis/patogenicidade , DNA Intergênico/genética , DNA Ribossômico/genética , Doenças dos Peixes/parasitologia , Larva/genética , Escócia
10.
J Fish Biol ; 96(3): 617-630, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31893567

RESUMO

The European bullhead (Cottus gobio) is widely distributed across Europe, and within the UK is native to England and Wales, where it is protected under the Habitats Directive. In Scotland, however, the species is considered invasive and thriving populations are recorded in the Forth and Clyde river catchments, and the Ale Water in the Scottish Borders. The genetic identity of the Scottish populations has not been established. There is also debate about the status of the European bullhead and its validity as single species, a species complex with several unresolved species, or distinct different species in its European distribution range. There is therefore a need to determine the taxonomy and likely source of the novel Scottish populations. Genetic analyses using cytochrome oxidase 1 (COI) mitochondrial DNA sequences were undertaken on specimens from the Forth and Clyde catchments, and combined with the results of morphological characteristics to provide a comprehensive assessment of the taxonomic classification for Scottish bullheads. There was considerable variation in morphological characteristics between populations within Scotland and a wider range of variability than previously recorded for English populations. Genetically the Scottish populations were very closely related to English specimens, supporting the hypothesis of introduction directly from England to Scotland. In terms of broader relationships, Scottish specimens are genetically more closely related to the ostensible species Chabot fluviatile Cottus perifretum, which has been suggested as one of a complex of species across Europe. Morphologically they exhibit characteristics on the spectrum between C. perifretum and C. gobio. There is an urgent need for the clarification of the taxonomy of Cottus sp(p). to avoid confusion in future publications, legislation and management practices relating to bullheads throughout the UK and Europe.


Assuntos
Espécies Introduzidas , Perciformes/classificação , Perciformes/genética , Animais , DNA Mitocondrial/genética , Europa (Continente) , Perciformes/anatomia & histologia , Rios , Escócia
11.
Curr Biol ; 29(17): R836-R839, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505182

RESUMO

A new study presents the first comprehensive genome and transcriptome data for an enigmatic group of apicomplexan parasites, the gregarines. The findings provide insights into the early evolution of parasitism in the apicomplexans and illustrate the important contributions of convergent and parallel evolution in the rise of eukaryotic parasites.


Assuntos
Apicomplexa/genética , Parasitos/genética , Animais , Genoma , Filogenia , Simbiose
12.
Trends Parasitol ; 35(9): 687-694, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31345767

RESUMO

Gregarine apicomplexans are closely related to parasites such as Plasmodium, Toxoplasma, and Cryptosporidium, which are causing severe health and economic burdens. Colonizing only invertebrates and having no obvious medical relevance, they are mostly ignored in 'omics' studies, although gregarines are the most basal apicomplexans and therefore key players in the understanding of the evolution of parasitism in the Apicomplexa from free-living ancestors. They belong to the largest exclusively parasitic phylum, but is this perception actually true? The effects of gregarines on their hosts seem to cover the whole spectrum of symbiosis from mutualistic to parasitic. We suggest future research directions to understand the evolutionary role of gregarines, by elucidating their biology and interaction with their hosts and the hosts' microbiota.


Assuntos
Apicomplexa/fisiologia , Invertebrados/parasitologia , Simbiose , Animais , Evolução Biológica
13.
J Eukaryot Microbiol ; 66(1): 4-119, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257078

RESUMO

This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discovered novel clades, exciting new genera and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have now found their home. Sampling soils, deeper marine waters and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples, and a standardized taxonomic guide for East Asian users.


Assuntos
Biodiversidade , Eucariotos/classificação , Filogenia , Terminologia como Assunto
14.
Mol Ecol ; 27(13): 2846-2857, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29851187

RESUMO

Tropical animals and plants are known to have high alpha diversity within forests, but low beta diversity between forests. By contrast, it is unknown whether microbes inhabiting the same ecosystems exhibit similar biogeographic patterns. To evaluate the biogeographies of tropical protists, we used metabarcoding data of species sampled in the soils of three lowland Neotropical rainforests. Taxa-area and distance-decay relationships for three of the dominant protist taxa and their subtaxa were estimated at both the OTU and phylogenetic levels, with presence-absence and abundance-based measures. These estimates were compared to null models. High local alpha and low regional beta diversity patterns were consistently found for both the parasitic Apicomplexa and the largely free-living Cercozoa and Ciliophora. Similar to animals and plants, the protists showed spatial structures between forests at the OTU and phylogenetic levels, and only at the phylogenetic level within forests. These results suggest that the biogeographies of macro- and micro-organismal eukaryotes in lowland Neotropical rainforests are partially structured by the same general processes. However, and unlike the animals and plants, the protist OTUs did not exhibit spatial structures within forests, which hinders our ability to estimate the local and regional diversity of protists in tropical forests.


Assuntos
Biodiversidade , Cercozoários/genética , Cilióforos/genética , Filogeografia , Animais , Código de Barras de DNA Taxonômico , Ecossistema , Plantas/genética , Floresta Úmida , Microbiologia do Solo
15.
PLoS One ; 12(11): e0187430, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29099876

RESUMO

BACKGROUND: Gregarines represent an important transition step from free-living predatory (colpodellids s.l.) and/or photosynthetic (Chromera and Vitrella) apicomplexan lineages to the most important pathogens, obligate intracellular parasites of humans and domestic animals such as coccidians and haemosporidians (Plasmodium, Toxoplasma, Eimeria, Babesia, etc.). While dozens of genomes of other apicomplexan groups are available, gregarines are barely entering the molecular age. Among the gregarines, archigregarines possess a unique mixture of ancestral (myzocytosis) and derived (lack of apicoplast, presence of subpellicular microtubules) features. METHODOLOGY/PRINCIPAL FINDINGS: In this study we revisited five of the early-described species of the genus Selenidium including the type species Selenidium pendula, with special focus on surface ultrastructure and molecular data. We were also able to describe three new species within this genus. All species were characterized at morphological (light and scanning electron microscopy data) and molecular (SSU rDNA sequence data) levels. Gregarine specimens were isolated from polychaete hosts collected from the English Channel near the Station Biologique de Roscoff, France: Selenidium pendula from Scolelepis squamata, S. hollandei and S. sabellariae from Sabellaria alveolata, S. sabellae from Sabella pavonina, Selenidium fallax from Cirriformia tentaculata, S. spiralis sp. n. and S. antevariabilis sp. n. from Amphitritides gracilis, and S. opheliae sp. n. from Ophelia roscoffensis. Molecular phylogenetic analyses of these data showed archigregarines clustering into five separate clades and support previous doubts about their monophyly. CONCLUSIONS/SIGNIFICANCE: Our phylogenies using the extended gregarine sampling show that the archigregarines are indeed not monophyletic with one strongly supported clade of Selenidium sequences around the type species S. pendula. We suggest the revision of the whole archigregarine taxonomy with only the species within this clade remaining in the genus Selenidium, while the other species should be moved into newly erected genera. However, the SSU rDNA phylogenies show very clearly that the tree topology and therefore the inferred relationships within and in between clades are unstable and such revision would be problematic without additional sequence data.


Assuntos
Apicomplexa/classificação , Filogenia , Animais , Apicomplexa/genética , DNA de Protozoário/genética
16.
Eur J Protistol ; 61(Pt A): 307-310, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29173840
17.
Eur J Protistol ; 60: 60-67, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28662493

RESUMO

Gregarine apicomplexans are unicellular organisms that infect invertebrate hosts in marine, freshwater and terrestrial habitats. The largest group of invertebrates infested on land is the insects. The insect order Psocoptera (booklice) has recently gained wider interest due to specimens occurring in stored food products and therefore being considered pest organisms. Biological control agents are often used to eliminate pest organisms. In this study we examined the psocid Dorypteryx domestica, an invasive psocid species that is spreading all over the world. We were able to isolate and describe a new gregarine species (Enterocystis dorypterygis sp. n.) infecting D. domestica. The trophozoites are panduri- or pyriform and their association/syzygy is caudo-frontal. The surface is inscribed by longitudinal epicytic folds covering the complete cell. Phylogenetic analyses of the SSU rDNA gene revealed an only weakly supported relationship with two Gregarina species G. ormieri and G. basiconstrictonea, both from tenebrionid beetles. Gregarines have been proposed to have some potential as biological control agents for several insects. Identifying the gregarine species infecting pest organisms like psocids is a first step and prerequisite for the probable utilization of these parasites as biological control agents in the future.


Assuntos
Apicomplexa/classificação , Apicomplexa/fisiologia , Insetos/parasitologia , Animais , Apicomplexa/genética , Apicomplexa/ultraestrutura , DNA Ribossômico/genética , Filogenia , Especificidade da Espécie
18.
Int J Syst Evol Microbiol ; 65(8): 2598-2614, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25985834

RESUMO

The eugregarines are a group of apicomplexan parasites that mostly infect the intestines of invertebrates. The high level of morphological variation found within and among species of eugregarines makes it difficult to find consistent and reliable traits that unite even closely related lineages. Based mostly on traits observed with light microscopy, the majority of described eugregarines from marine invertebrates has been classified into a single group, the Lecudinidae. Our understanding of the overall diversity and phylogenetic relationships of lecudinids is very poor, mainly because only a modest amount of exploratory research has been done on the group and very few species of lecudinids have been characterized at the molecular phylogenetic level. In an attempt to understand the diversity of marine gregarines better, we surveyed lecudinids that infect the intestines of Pacific ascidians (i.e. sea squirts) using ultrastructural and molecular phylogenetic approaches; currently, these species fall within one genus, Lankesteria. We collected lecudinid gregarines from six ascidian host species, and our data demonstrated that each host was infected by a different species of Lankesteria: (i) Lankesteria hesperidiiformis sp. nov., isolated from Distaplia occidentalis, (ii) Lankesteria metandrocarpae sp. nov., isolated from Metandrocarpa taylori, (iii) Lankesteria halocynthiae sp. nov., isolated from Halocynthia aurantium, (iv) Lankesteria herdmaniae sp. nov., isolated from Herdmania momus, (v) Lankesteria cf. ritterellae, isolated from Ritterella rubra, and (vi) Lankesteria didemni sp. nov., isolated from Didemnum vexillum. Visualization of the trophozoites with scanning electron microscopy showed that four of these species were covered with epicytic folds, whereas two of the species were covered with a dense pattern of epicytic knobs. The molecular phylogenetic data suggested that species of Lankesteria with surface knobs form a clade that is nested within a paraphyletic assemblage species of Lankesteria with epicytic folds.


Assuntos
Apicomplexa/classificação , Intestinos/parasitologia , Filogenia , Urocordados/parasitologia , Animais , Apicomplexa/citologia , Apicomplexa/isolamento & purificação , DNA de Protozoário/genética , Genes de RNAr , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Oceano Pacífico , Análise de Sequência de DNA , Trofozoítos/citologia
19.
Parasit Vectors ; 7: 504, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403767

RESUMO

BACKGROUND: The invasive eel parasite Anguillicoloides crassus (syn. Anguillicola crassus) is considered one of the major causes for the decline of the European eel (Anguilla anguilla) panmictic population. It impairs the swim bladder function and reduces swimming performance of its host. The life cycle of this parasite involves different intermediate and paratenic hosts. Despite an efficient immune system of the paratenic fish hosts acting against infections with A. crassus, levels of parasitized eels remain high in European river systems. Recently, the round goby Neogobius melanostomus (Gobiidae) has become dominant in many rivers in Europe and is still spreading at a rapid pace. This highly invasive species might potentially act as an important, so far neglected paratenic fish host for A. crassus. METHODS: Based on own observations and earlier single sightings of A. crassus in N. melanostomus, 60 fresh individuals of N. melanostomus were caught in the Rhine River and examined to assess the infection levels with metazoan parasites, especially A. crassus. Glycerin preparations were used for parasite identification. RESULTS: The parasite most frequently found in N. melanostomus was the acanthocephalan Pomphorhynchus sp. (subadult stage) which occurred mainly encysted in the mesenteries and liver. Every third gobiid (P = 31.7%) was infected by A. crassus larvae (L3) which exclusively occurred inside the acanthocephalan cysts. No intact or degenerated larvae of A. crassus were detected elsewhere in the goby, neither in the body cavity and mesenteries nor in other organs. Affected cysts contained the acanthocephalan larvae and 1-12 (mI =3) living A. crassus larvae. Additionally, encysted larvae of the nematode Raphidascaris acus were detected in the gobies, but only in the body cavity and not inside the acanthocephalan cysts. CONCLUSIONS: Based on our observations, we suggest that A. crassus might actively bypass the immune response of N. melanostomus by invading the cysts of acanthocephalan parasites of the genus Pomphorhynchus using them as "Trojan horses". Providing that eels prey on the highly abundant round goby and that the latter transfers viable infective larvae of A. crassus, the new paratenic host might have a strong impact on the epidemiology of A. crassus.


Assuntos
Enguias/parasitologia , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Nematoides/crescimento & desenvolvimento , Infecções por Nematoides/veterinária , Animais , Estágios do Ciclo de Vida , Nematoides/fisiologia , Infecções por Nematoides/parasitologia
20.
Parasitol Res ; 112(12): 4255-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096608

RESUMO

The European rabbit (Oryctolagus cuniculus) belongs to the most invasive and successful mammalian species, which is distributed nearly worldwide. In Europe, they inhabit broad parts of the mainland and subsequently reached several European islands via anthropogenic diversion. Rabbits can also serve as hosts for numerous parasite species. The parasite and pathogen fauna of O. cuniculus have been well documented in various European countries, although studies in Germany are scarce. Until now, a comprehensive survey combining recent international studies over parasite fauna of wild rabbits had not been conducted. We examined 50 wild rabbits from an urban area near Aachen (Germany) to identify their metazoan parasite fauna, and then compared our findings to previous international investigations. A total of nine parasite species were isolated consisting of four endoparasite species (Cittotaenia denticulata, Graphidium strigosum, Passalurus ambiguus, and Trichostrongylus retortaeformis) and five ectoparasite species (Cheyletiella parasitivorax, Ixodes ricinus, Leporacarus gibbus, Haemodipsus ventricosus, and Spilopsyllus cuniculi). Among the ectoparasites were two verifiable human pathogenic species and two potentially pathogenic species. In comparison to previous studies, a high number of similarities in composition of helminth species fauna were revealed. Furthermore, our results showed partial agreement with international surveys in prevalence and mean intensity of the parasites C. denticulata, G. strigosum, P. ambiguus, and T. retortaeformis.


Assuntos
Parasitos/isolamento & purificação , Animais , Cidades , Ectoparasitoses/veterinária , Feminino , Alemanha , Masculino , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...