Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1409333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919608

RESUMO

Introduction: Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods: Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results: Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions: Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Macrófagos , Proteína Adaptadora de Sinalização NOD2 , Receptores de IgG , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/imunologia , Animais , Humanos , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Feminino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fagocitose , Rituximab/farmacologia , Rituximab/uso terapêutico
2.
Pharmaceuticals (Basel) ; 17(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794175

RESUMO

Neutrophils, which constitute the most abundant leukocytes in human blood, emerge as crucial players in the induction of endothelial cell death and the modulation of endothelial cell responses under both physiological and pathological conditions. The hallmark of preeclampsia is endothelial dysfunction induced by systemic inflammation, in which neutrophils, particularly through the formation of neutrophil extracellular traps (NETs), play a pivotal role in the development and perpetuation of endothelial dysfunction and the hypertensive state. Considering the potential of numerous pharmaceutical agents to attenuate NET formation (NETosis) in preeclampsia, a comprehensive assessment of the extensively studied candidates becomes imperative. This review aims to identify mechanisms associated with the induction and negative regulation of NETs in the context of preeclampsia. We discuss potential drugs to modulate NETosis, such as NF-κß inhibitors, vitamin D, and aspirin, and their association with mutagenicity and genotoxicity. Strong evidence supports the notion that molecules involved in the activation of NETs could serve as promising targets for the treatment of preeclampsia.

3.
J Innate Immun ; 16(1): 283-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38744252

RESUMO

INTRODUCTION: The ribonuclease (RNase) A superfamily encodes cationic antimicrobial proteins with potent microbicidal activity toward uropathogenic bacteria. Ribonuclease 6 (RNase6) is an evolutionarily conserved, leukocyte-derived antimicrobial peptide with potent microbicidal activity toward uropathogenic Escherichia coli (UPEC), the most common cause of bacterial urinary tract infections (UTIs). In this study, we generated Rnase6-deficient mice to investigate the hypothesis that endogenous RNase 6 limits host susceptibility to UTI. METHODS: We generated a Rnase6EGFP knock-in allele to identify cellular sources of Rnase6 and determine the consequences of homozygous Rnase6 deletion on antimicrobial activity and UTI susceptibility. RESULTS: We identified monocytes and macrophages as the primary cellular sources of Rnase6 in bladders and kidneys of Rnase6EGFP/+ mice. Rnase6 deficiency (i.e., Rnase6EGFP/EGFP) resulted in increased upper urinary tract UPEC burden during experimental UTI, compared to Rnase6+/+ controls. UPEC displayed increased intracellular survival in Rnase6-deficient macrophages. CONCLUSION: Our findings establish that RNase6 prevents pyelonephritis by promoting intracellular UPEC killing in monocytes and macrophages and reinforce the overarching contributions of endogenous antimicrobial RNase A proteins to host UTI defense.


Assuntos
Infecções por Escherichia coli , Macrófagos , Camundongos Knockout , Ribonucleases , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Células Cultivadas , Modelos Animais de Doenças , Infecções por Escherichia coli/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Ribonucleases/metabolismo , Ribonucleases/genética , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/imunologia
4.
J Innate Immun ; 15(1): 865-875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980892

RESUMO

Mounting evidence suggests that antimicrobial peptides and proteins (AMPs) belonging to the RNase A superfamily have a critical role in defending the bladder and kidney from bacterial infection. RNase 6 has been identified as a potent, leukocyte-derived AMP, but its impact on urinary tract infection (UTI) in vivo has not been demonstrated. To test the functional role of human RNase 6, we generated RNASE6 transgenic mice and studied their susceptibility to experimental UTI. In addition, we generated bone marrow-derived macrophages to study the impact of RNase 6 on antimicrobial activity within a cellular context. When subjected to experimental UTI, RNASE6 transgenic mice developed reduced uropathogenic Escherichia coli (UPEC) burden, mucosal injury, and inflammation compared to non-transgenic controls. Monocytes and macrophages were the predominant cellular sources of RNase 6 during UTI, and RNASE6 transgenic macrophages were more proficient at intracellular UPEC killing than non-transgenic controls. Altogether, our findings indicate a protective role for human RNase 6 during experimental UTI.


Assuntos
Ribonucleases , Infecções Urinárias , Animais , Humanos , Camundongos , Endorribonucleases/genética , Rim , Camundongos Transgênicos , Ribonucleases/genética , Bexiga Urinária/microbiologia
6.
J Immunol ; 209(6): 1212-1223, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995507

RESUMO

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia, but, despite advances in treatment, many patients still experience relapse. CLL cells depend on interactions with supportive cells, and nurse-like cells (NLCs) are the major such cell type. However, little is known about how NLCs develop. Here, we performed DNA methylation analysis of CLL patient-derived NLCs using the 850K Illumina array, comparing CD14+ cells at day 1 (monocytes) versus day 14 (NLCs). We found a strong loss of methylation in AP-1 transcription factor binding sites, which may be driven by MAPK signaling. Testing of individual MAPK pathways (MEK, p38, and JNK) revealed a strong dependence on MEK/ERK for NLC development, because treatment of patient samples with the MEK inhibitor trametinib dramatically reduced NLC development in vitro. Using the adoptive transfer Eµ-TCL1 mouse model of CLL, we found that MEK inhibition slowed CLL progression, leading to lower WBC counts and to significantly longer survival time. There were also lower numbers of mouse macrophages, particularly within the M2-like population. In summary, NLC development depends on MEK signaling, and inhibition of MEK leads to increased survival time in vivo. Hence, targeting the MEK/ERK pathway may be an effective treatment strategy for CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Diferenciação Celular , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Fator de Transcrição AP-1/metabolismo
7.
J Invest Dermatol ; 141(4): 810-820.e8, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946878

RESUMO

The staphylococcal α-hemolysin is critical for the pathogenesis of Staphylococcus aureus skin and soft tissue infection. Vaccine and infection-elicited α-hemolysin-specific antibodies protect against S. aureus‒induced dermonecrosis, a key feature of skin and soft tissue infection. Many interactions between α-hemolysin and host cells have been identified that promote tissue damage and modulate immune responses, but the mechanisms by which protective adaptive responses cross talk with innate responses at the tissue level are not clear. Using an established mouse model of skin and soft tissue infection and a newly developed histopathologic scoring system, we observed pathologic correlates early after infection, predicting protection against dermonecrosis by anti-α-hemolysin antibody. Protection was characterized by robust neutrophilic inflammation and compartmentalization of bacteria into discrete abscesses, which led to the attenuation of dermonecrosis and enhancement of bacterial clearance later in the infection. The ultimate outcome of infection was driven by the recruitment of neutrophils within the first day after infection but not later. Antibody-mediated protection was dependent on toxin neutralization rather than on enhanced opsonophagocytic killing by neutrophils or protection against toxin-mediated neutrophil lysis. Together, these findings advance our understanding of the mechanisms by which the early synergism between antibody-mediated toxin neutralization and tissue-specific neutrophilic inflammation preserve tissue integrity during infection.


Assuntos
Anticorpos Antibacterianos/metabolismo , Anticorpos Neutralizantes/metabolismo , Toxinas Bacterianas/imunologia , Proteínas Hemolisinas/imunologia , Neutrófilos/imunologia , Pele/patologia , Infecções Cutâneas Estafilocócicas/imunologia , Animais , Anticorpos Antibacterianos/administração & dosagem , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Imunização Passiva/métodos , Camundongos , Necrose/imunologia , Necrose/microbiologia , Necrose/patologia , Infiltração de Neutrófilos , Cultura Primária de Células , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Staphylococcus aureus/imunologia
8.
J Am Soc Nephrol ; 32(1): 69-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148615

RESUMO

BACKGROUND: In children, the acute pyelonephritis that can result from urinary tract infections (UTIs), which commonly ascend from the bladder to the kidney, is a growing concern because it poses a risk of renal scarring and irreversible loss of kidney function. To date, the cellular mechanisms underlying acute pyelonephritis-driven renal scarring remain unknown. METHODS: We used a preclinical model of uropathogenic Escherichia coli-induced acute pyelonephritis to determine the contribution of neutrophils and monocytes to resolution of the condition and the subsequent development of kidney fibrosis. We used cell-specific monoclonal antibodies to eliminate neutrophils, monocytes, or both. Bacterial ascent and the cell dynamics of phagocytic cells were assessed by biophotonic imaging and flow cytometry, respectively. We used quantitative RT-PCR and histopathologic analyses to evaluate inflammation and renal scarring. RESULTS: We found that neutrophils are critical to control bacterial ascent, which is in line with previous studies suggesting a protective role for neutrophils during a UTI, whereas monocyte-derived macrophages orchestrate a strong, but ineffective, inflammatory response against uropathogenic, E. coli-induced, acute pyelonephritis. Experimental neutropenia during acute pyelonephritis resulted in a compensatory increase in the number of monocytes and heightened macrophage-dependent inflammation in the kidney. Exacerbated macrophage-mediated inflammatory responses promoted renal scarring and compromised renal function, as indicated by elevated serum creatinine, BUN, and potassium. CONCLUSIONS: These findings reveal a previously unappreciated outcome for neutrophil-macrophage imbalance in promoting host susceptibility to acute pyelonephritis and the development of permanent renal damage. This suggests targeting dysregulated macrophage responses might be a therapeutic tool to prevent renal scarring during acute pyelonephritis.


Assuntos
Cicatriz/fisiopatologia , Rim/fisiopatologia , Macrófagos/citologia , Neutrófilos/citologia , Pielonefrite/metabolismo , Animais , Escherichia coli , Feminino , Fibrose/microbiologia , Fibrose/fisiopatologia , Inflamação , Rim/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Fagocitose , Pielonefrite/microbiologia , Pielonefrite/fisiopatologia , Infecções Urinárias/microbiologia , Infecções Urinárias/fisiopatologia
9.
Front Cell Infect Microbiol ; 10: 512743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194779

RESUMO

Non-typeable Haemophilus influenzae (NTHi) causes multiple diseases of the human airway and is a predominant bacterial pathogen of acute otitis media and otitis media in which treatment fails. NTHi utilizes a system of phase variable epigenetic regulation, termed the phasevarion, to facilitate adaptation and survival within multiple sites of the human host. The NTHi phasevarion influences numerous disease-relevant phenotypes such as biofilm formation, antibiotic resistance, and opsonization. We have previously identified an advantageous selection for a specific phasevarion status, which significantly affects severity and chronicity of experimental otitis media. In this study, we utilized pure cultures of NTHi variants in which modA was either locked ON or locked OFF, and thus modA was unable to phase vary. These locked variants were used to assess the progression of experimental otitis media and define the specific immune response induced by each subpopulation. Although the initial disease caused by each subpopulation was similar, the immune response elicited by each subpopulation was unique. The modA2 OFF variant induced significantly greater activation of macrophages both in vitro and within the middle ear during disease. In contrast, the modA2 ON variant induced a greater neutrophil extracellular trap response, which led to greater killing of the modA2 ON variant. These data suggest that not only does the NTHi phasevarion facilitate adaptation, but also allows the bacteria to alter immune responses during disease. Understanding these complex bacterial-host interactions and the regulation of bacterial factors responsible is critical to the development of better diagnostic, treatment, and preventative strategies for these bacterial pathogens.


Assuntos
Epigênese Genética , Infecções por Haemophilus , Haemophilus influenzae , Otite Média , Animais , Chinchila , Orelha Média , Haemophilus influenzae/genética , Humanos , Otite Média/microbiologia
10.
Front Immunol ; 11: 97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117251

RESUMO

During infection, phagocytic cells pursue homeostasis in the host via multiple mechanisms that control microbial invasion. Neutrophils respond to infection by exerting a variety of cellular processes, including chemotaxis, activation, phagocytosis, degranulation and the generation of reactive oxygen species (ROS). Calcium (Ca2+) signaling and the activation of specific Ca2+ channels are required for most antimicrobial effector functions of neutrophils. The transient receptor potential melastatin-2 (TRPM2) cation channel has been proposed to play important roles in modulating Ca2+ mobilization and oxidative stress in neutrophils. In the present study, we use a mouse model of Listeria monocytogenes infection to define the role of TRPM2 in the regulation of neutrophils' functions during infection. We show that the susceptibility of Trpm2-/- mice to L. monocytogenes infection is characterized by increased migration rates of neutrophils and monocytes to the liver and spleen in the first 24 h. During the acute phase of L. monocytogenes infection, Trpm2-/- mice developed septic shock, characterized by increased serum levels of TNF-α, IL-6, and IL-10. Furthermore, in vivo depletion of neutrophils demonstrated a critical role of these immune cells in regulating acute inflammation in Trpm2-/- infected mice. Gene expression and inflammatory cytokine analyses of infected tissues further confirmed the hyperinflammatory profile of Trpm2-/- neutrophils. Finally, the increased inflammatory properties of Trpm2-/- neutrophils correlated with the dysregulated cytoplasmic concentration of Ca2+ and potentiated membrane depolarization, in response to L. monocytogenes. In conclusion, our findings suggest that the TRPM2 channel plays critical functional roles in regulating the inflammatory properties of neutrophils and preventing tissue damage during Listeria infection.


Assuntos
Listeriose/imunologia , Neutrófilos/imunologia , Canais de Cátion TRPM/fisiologia , Animais , Sinalização do Cálcio/imunologia , Morte Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Inflamação/metabolismo , Listeria monocytogenes , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/metabolismo
11.
Sci Rep ; 9(1): 13458, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530833

RESUMO

Abdominal aortic aneurysm (AAA) is characterized by transmural infiltration of myeloid cells at the vascular injury site. Previously, we reported preventive effects of Notch deficiency on the development of AAA by reduction of infiltrating myeloid cells. In this study, we examined if Notch inhibition attenuates the progression of pre-established AAA and potential implications. Pharmacological Notch inhibitor (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-(S)-phenylglycine t-butyl ester; DAPT) was administered subcutaneously three times a week starting at day 28 of angiotensin II (AngII) infusion. Progressive increase in pulse wave velocity (PWV), maximal intra-luminal diameter (MILD) and maximal external aortic diameter (MEAD) were observed at day 56 of the AngII. DAPT prevented such increase in MILD, PWV and MEAD (P < 0.01). Histologically, the aortae of DAPT-treated Apoe-/- mice had significant reduction in inflammatory response and elastin fragmentation. Naked collagen microfibrils and weaker banded structure observed in the aortae of Apoe-/- mice in response to AngII, were substantially diminished by DAPT. A significant decrease in the proteolytic activity in the aneurysmal tissues and vascular smooth muscle cells (vSMCs) was observed with DAPT (P < 0.01). In human and mouse AAA tissues, increased immunoreactivity of activated Notch signaling correlated strongly with CD38 expression (R2 = 0.61). Collectively, we propose inhibition of Notch signaling as a potential therapeutic target for AAA progression.


Assuntos
Aneurisma da Aorta Abdominal/tratamento farmacológico , Dipeptídeos/farmacologia , Receptores Notch/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Angiotensina II/efeitos adversos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/metabolismo , Células Cultivadas , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
12.
J Immunol Res ; 2019: 2946713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31218234

RESUMO

Helminth parasites modulate immune responses in their host to prevent their elimination and to establish chronic infections. Our previous studies indicate that Taenia crassiceps-excreted/secreted antigens (TcES) downregulate inflammatory responses in rodent models of autoimmune diseases, by promoting the generation of alternatively activated-like macrophages (M2) in vivo. However, the molecular mechanisms triggered by TcES that modulate macrophage polarization and inflammatory response remain unclear. Here, we found that, while TcES reduced the production of inflammatory cytokines (IL-6, IL-12, and TNFα), they increased the release of IL-10 in LPS-induced bone marrow-derived macrophages (BMDM). However, TcES alone or in combination with LPS or IL-4 failed to increase the production of the canonical M1 or M2 markers in BMDM. To further define the anti-inflammatory effect of TcES in the response of LPS-stimulated macrophages, we performed transcriptomic array analyses of mRNA and microRNA to evaluate their levels. Although the addition of TcES to LPS-stimulated BMDM induced modest changes in the inflammatory mRNA profile, it induced the production of mRNAs associated with the activation of different receptors, phagocytosis, and M2-like phenotype. Moreover, we found that TcES induced upregulation of specific microRNAs, including miR-125a-5p, miR-762, and miR-484, which are predicted to target canonical inflammatory molecules and pathways in LPS-induced BMDM. These results suggest that TcES can modulate proinflammatory responses in macrophages by inducing regulatory posttranscriptional mechanisms and hence reduce detrimental outcomes in hosts running with inflammatory diseases.


Assuntos
Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , MicroRNAs/genética , Taenia/fisiologia , Animais , Biomarcadores , Citocinas/metabolismo , Feminino , Imunomodulação , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Teníase/genética , Teníase/imunologia , Teníase/metabolismo , Teníase/parasitologia
13.
J Immunol ; 201(7): 2016-2027, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120123

RESUMO

Cystic fibrosis (CF), one of the most common human genetic diseases worldwide, is caused by a defect in the CF transmembrane conductance regulator (CFTR). Patients with CF are highly susceptible to infections caused by opportunistic pathogens (including Burkholderia cenocepacia), which induce excessive lung inflammation and lead to the eventual loss of pulmonary function. Abundant neutrophil recruitment into the lung is a key characteristic of bacterial infections in CF patients. In response to infection, inflammatory neutrophils release reactive oxygen species and toxic proteins, leading to aggravated lung tissue damage in patients with CF. The present study shows a defect in reactive oxygen species production by mouse Cftr-/- , human F508del-CFTR, and CF neutrophils; this results in reduced antimicrobial activity against B. cenocepacia Furthermore, dysregulated Ca2+ homeostasis led to increased intracellular concentrations of Ca2+ that correlated with significantly diminished NADPH oxidase response and impaired secretion of neutrophil extracellular traps in human CF neutrophils. Functionally deficient human CF neutrophils recovered their antimicrobial killing capacity following treatment with pharmacological inhibitors of Ca2+ channels and CFTR channel potentiators. Our findings suggest that regulation of neutrophil Ca2+ homeostasis (via CFTR potentiation or by the regulation of Ca2+ channels) can be used as a new therapeutic approach for reestablishing immune function in patients with CF.


Assuntos
Infecções por Burkholderia/imunologia , Burkholderia cenocepacia/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/imunologia , Mutação/genética , Neutrófilos/imunologia , Pneumonia/imunologia , Adolescente , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Criança , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Homeostase , Humanos , Imunidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Infiltração de Neutrófilos , Espécies Reativas de Oxigênio/metabolismo
14.
FASEB J ; : fj201800458, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906242

RESUMO

We previously developed a tissue-engineered vascular graft (TEVG) made by seeding autologous cells onto a biodegradable tubular scaffold, in an attempt to create a living vascular graft with growth potential for use in children undergoing congenital heart surgery. Results of our clinical trial showed that the TEVG possesses growth capacity but that its widespread clinical use is not yet advisable due to the high incidence of TEVG stenosis. In animal models, TEVG stenosis is caused by increased monocytic cell recruitment and its classic ("M1") activation. Here, we report on the source and regulation of these monocytes. TEVGs were implanted in wild-type, CCR2 knockout ( Ccr2-/-), splenectomized, and spleen graft recipient mice. We found that bone marrow-derived Ly6C+hi monocytes released from sequestration by the spleen are the source of mononuclear cells infiltrating the TEVG during the acute phase of neovessel formation. Furthermore, short-term administration of losartan (0.6 g/L, 2 wk), an angiotensin II type 1 receptor antagonist, significantly reduced the macrophage populations (Ly6C+/-/F480+) in the scaffolds and improved long-term patency in TEVGs. Notably, the combined effect of bone marrow-derived mononuclear cell seeding with short-term losartan treatment completely prevented the development of TEVG stenosis. Our results provide support for pharmacologic treatment with losartan as a strategy to modulate monocyte infiltration into the grafts and thus prevent TEVG stenosis.-Ruiz-Rosado, J. D. D., Lee, Y.-U., Mahler, N., Yi, T., Robledo-Avila, F., Martinez-Saucedo, D., Lee, A. Y., Shoji, T., Heuer, E., Yates, A. R., Pober, J. S., Shinoka, T., Partida-Sanchez, S., Breuer, C. K. Angiotensin II receptor I blockade prevents stenosis of tissue engineered vascular grafts.

15.
Mediators Inflamm ; 2016: 9101762, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057101

RESUMO

Macrophage migration inhibitory factor (MIF) mediates immunity against Toxoplasma gondii infection by inducing inflammatory cytokines required to control the parasite replication. However, the role of this inflammatory mediator in the cell-mediated immune response against this infection is still poorly understood. Here, we used T. gondii-infected WT and Mif (-/-) mice to analyze the role of MIF in the maturation of CD11b(+) and CD8α (+) dendritic cells (DCs). We found that MIF promotes maturation of CD11b(+) but not CD8α (+) DCs, by inducing IL-12p70 production and CD86 expression. Infected Mif (-/-) mice showed significantly lower numbers of TNF and inducible nitric oxide synthase- (iNOS-) producing DCs (TipDCs) compared to infected WT mice. The adoptive transfer of Ly6C(high) monocytes into infected WT or Mif (-/-) mice demonstrated that MIF participates in the differentiation of Ly6C(high) monocytes into TipDCs. In addition, infected Mif (-/-) mice display a lower percentage of IFN-γ-producing natural killer (NK) cells compared to WT mice, which is associated with reducing numbers of TipDCs in Mif (-/-) mice. Furthermore, administration of recombinant MIF (rMIF) into T. gondii-infected Mif (-/-) mice restored the numbers of TipDCs and reversed the susceptible phenotype of Mif (-/-) mice. Collectively, these results demonstrate an important role for MIF inducing cell-mediated immunity to T. gondii infection.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Monócitos/metabolismo , Toxoplasmose/metabolismo , Animais , Enterotoxinas/farmacologia , Feminino , Galactosamina/farmacologia , Imunidade Celular/imunologia , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Oxirredutases Intramoleculares/genética , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/efeitos dos fármacos , Neutrófilos/microbiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Toxoplasmose/imunologia , Fator de Necrose Tumoral alfa/metabolismo
16.
PLoS One ; 10(12): e0145342, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26699615

RESUMO

Classically (M1) and alternatively activated (M2) macrophages exhibit distinct phenotypes and functions. It has been difficult to dissect macrophage phenotypes in vivo, where a spectrum of macrophage phenotypes exists, and also in vitro, where low or non-selective M2 marker protein expression is observed. To provide a foundation for the complexity of in vivo macrophage phenotypes, we performed a comprehensive analysis of the transcriptional signature of murine M0, M1 and M2 macrophages and identified genes common or exclusive to either subset. We validated by real-time PCR an M1-exclusive pattern of expression for CD38, G-protein coupled receptor 18 (Gpr18) and Formyl peptide receptor 2 (Fpr2) whereas Early growth response protein 2 (Egr2) and c-Myc were M2-exclusive. We further confirmed these data by flow cytometry and show that M1 and M2 macrophages can be distinguished by their relative expression of CD38 and Egr2. Egr2 labeled more M2 macrophages (~70%) than the canonical M2 macrophage marker Arginase-1, which labels 24% of M2 macrophages. Conversely, CD38 labeled most (71%) in vitro M1 macrophages. In vivo, a similar CD38+ population greatly increased after LPS exposure. Overall, this work defines exclusive and common M1 and M2 signatures and provides novel and improved tools to distinguish M1 and M2 murine macrophages.


Assuntos
Biomarcadores/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Inflamação/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Transcriptoma , Animais , Citometria de Fluxo , Técnicas Imunoenzimáticas , Inflamação/induzido quimicamente , Inflamação/genética , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Int J Biol Sci ; 10(8): 909-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170304

RESUMO

The C-type lectin receptor mMGL is expressed exclusively by myeloid antigen presenting cells (APC) such as dendritic cells (DC) and macrophages (Mφ), and it mediates binding to glycoproteins carrying terminal galactose and α- or ß-N-acetylgalactosamine (Gal/GalNAc) residues. Trypanosoma cruzi (T. cruzi) expresses large amounts of mucin (TcMUC)-like glycoproteins. Here, we show by lectin-blot that galactose moieties are also expressed on the surface of T. cruzi. Male mMGL knockout (-/-) and wild-type (WT) C57BL/6 mice were infected intraperitoneally with 10(4) T. cruzi trypomastigotes (Queretaro strain). Following T. cruzi infection, mMGL-/- mice developed higher parasitemia and higher mortality rates compared with WT mice. Although hearts from T. cruzi-infected WT mice presented few amastigote nests, mMGL-/- mice displayed higher numbers of amastigote nests. Compared with WT, Mφ from mMGL-/- mice had low production of nitric oxide (NO), interleukin (IL)-12 and tumor necrosis factor (TNF)-α in response to soluble T. cruzi antigens (TcAg). Interestingly, upon in vitro T. cruzi infection, mMGL-/- Mφ expressed lower levels of MHC-II and TLR-4 and harbored higher numbers of parasites, even when mMGL-/- Mφ were previously primed with IFN-γ or LPS/IFN-γ. These data suggest that mMGL plays an important role during T. cruzi infection, is required for optimal Mφ activation, and may synergize with TLR-4-induced pathways to produce TNF-α, IL-1ß and NO during the early phase of infection.


Assuntos
Galactose/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Trypanosoma cruzi/fisiologia , Tripanossomíase/imunologia , Animais , Imunidade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...