Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(14): 7516-7523, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32219241

RESUMO

The chiroptical properties of multi-chromophoric systems are governed by the intermolecular arrangement of the monomeric units. We report on a computational and experimental study of the linear optical properties and supramolecular structure of a rhodamine heterodimer assembled on a DNA scaffold. The experimental absorption and circular dichroism (CD) profiles confirm the dimer formation. Computationally, starting from low-cost DFT/TDDFT simulations of the bare dimer we attribute the measured -/+ CD sign sequence of the S1/S2 bands to a specific chiral conformation of the heterodimer. In the monomers, as typical for rhodamine dyes, the electric transition dipole of the lowest π-π* transition is parallel to the long axis of the xanthene planes. We show that in the heterodimer the sign sequence of the two CD bands is related to the orientation of these long axes. To account explicitly for environment effects, we use molecular dynamics (MD) simulations for characterizing the supramolecular structure of the two optical isomers tethered on DNA. Average absorption and CD-profiles were modeled using ab initio TDDFT calculations at the geometries sampled along a few nanosecond MD run. The absorption profiles computed for both optical isomers are in good agreement with the experimental absorption spectrum and do not allow one to discriminate between them. The computed averaged CD profiles provide the orientation of monomers in the enantiomer that is dominant under the experimental conditions.


Assuntos
DNA/química , Modelos Moleculares , Rodaminas/química , Dicroísmo Circular , Química Computacional , Simulação de Dinâmica Molecular , Estrutura Molecular
2.
Phys Chem Chem Phys ; 19(34): 23043-23051, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28817145

RESUMO

Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm-1 (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution.


Assuntos
DNA/química , Rodaminas/química , Materiais Biocompatíveis/química , Dimerização , Elétrons , Modelos Moleculares , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...