Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963637

RESUMO

BACKGROUND: The metabolism of tryptophan to kynurenines (KYN) by indoleamine-2,3-dioxygenase or tryptophan-2,3-dioxygenase is a key pathway of constitutive and adaptive tumor immune resistance. The immunosuppressive effects of KYN in the tumor microenvironment are predominantly mediated by the aryl hydrocarbon receptor (AhR), a cytosolic transcription factor that broadly suppresses immune cell function. Inhibition of AhR thus offers an antitumor therapy opportunity via restoration of immune system functions. METHODS: The expression of AhR was evaluated in tissue microarrays of head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). A structure class of inhibitors that block AhR activation by exogenous and endogenous ligands was identified, and further optimized, using a cellular screening cascade. The antagonistic properties of the selected AhR inhibitor candidate BAY 2416964 were determined using transactivation assays. Nuclear translocation, target engagement and the effect of BAY 2416964 on agonist-induced AhR activation were assessed in human and mouse cancer cells. The immunostimulatory properties on gene and cytokine expression were examined in human immune cell subsets. The in vivo efficacy of BAY 2416964 was tested in the syngeneic ovalbumin-expressing B16F10 melanoma model in mice. Coculture of human H1299 NSCLC cells, primary peripheral blood mononuclear cells and fibroblasts mimicking the human stromal-tumor microenvironment was used to assess the effects of AhR inhibition on human immune cells. Furthermore, tumor spheroids cocultured with tumor antigen-specific MART-1 T cells were used to study the antigen-specific cytotoxic T cell responses. The data were analyzed statistically using linear models. RESULTS: AhR expression was observed in tumor cells and tumor-infiltrating immune cells in HNSCC, NSCLC and CRC. BAY 2416964 potently and selectively inhibited AhR activation induced by either exogenous or endogenous AhR ligands. In vitro, BAY 2416964 restored immune cell function in human and mouse cells, and furthermore enhanced antigen-specific cytotoxic T cell responses and killing of tumor spheroids. In vivo, oral application with BAY 2416964 was well tolerated, induced a proinflammatory tumor microenvironment, and demonstrated antitumor efficacy in a syngeneic cancer model in mice. CONCLUSIONS: These findings identify AhR inhibition as a novel therapeutic approach to overcome immune resistance in various types of cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dioxigenases , Neoplasias de Cabeça e Pescoço , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Triptofano , Receptores de Hidrocarboneto Arílico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Cinurenina/metabolismo , Imunoterapia , Fatores Imunológicos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Microambiente Tumoral
2.
Nat Commun ; 14(1): 1823, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005414

RESUMO

Mass spectrometry imaging vows to enable simultaneous spatially resolved investigation of hundreds of metabolites in tissues, but it primarily relies on traditional ion images for non-data-driven metabolite visualization and analysis. The rendering and interpretation of ion images neither considers nonlinearities in the resolving power of mass spectrometers nor does it yet evaluate the statistical significance of differential spatial metabolite abundance. Here, we outline the computational framework moleculaR ( https://github.com/CeMOS-Mannheim/moleculaR ) that is expected to improve signal reliability by data-dependent Gaussian-weighting of ion intensities and that introduces probabilistic molecular mapping of statistically significant nonrandom patterns of relative spatial abundance of metabolites-of-interest in tissue. moleculaR also enables cross-tissue statistical comparisons and collective molecular projections of entire biomolecular ensembles followed by their spatial statistical significance evaluation on a single tissue plane. It thereby fosters the spatially resolved investigation of ion milieus, lipid remodeling pathways, or complex scores like the adenylate energy charge within the same image.


Assuntos
Diagnóstico por Imagem , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Distribuição Normal
3.
Ann Intensive Care ; 12(1): 79, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35986824

RESUMO

BACKGROUND: Long-term pulmonary sequelae, including 1-year thoracic computed tomography (CT) sequelae of paediatric acute respiratory distress syndrome (ARDS) remain unknown. The purpose of the study was to determine pulmonary abnormalities in child survivors of pulmonary (p-ARDS) and extra-pulmonary ARDS (ep-ARDS) 1 year after paediatric intensive care unit discharge (PICUD). METHODS: Prospective multicentre study in four paediatric academic centres between 2005 and 2014. Patients with ARDS were assessed 1 year after PICUD with respiratory symptom questionnaire, thoracic CT and pulmonary function tests (PFT). RESULTS: 39 patients (31 p-ARDS) aged 1.1-16.2 years were assessed. Respiratory symptoms at rest or exercise and/or respiratory maintenance treatment were reported in 23 (74%) of children with p-ARDS but in 1 (13%) of those with ep-ARDS. Thoracic CT abnormalities were observed in 18 (60%) of children with p-ARDS and 4 (50%) of those with ep-ARDS. Diffuse and more important CT abnormalities, such as ground glass opacities or mosaic perfusion patterns, were observed in 5 (13%) of children, all with p-ARDS. PFT abnormalities were observed in 30 (86%) of patients: lung hyperinflation and/or obstructive pattern in 12 (34%) children, restrictive abnormalities in 6 (50%), mild decrease in diffusing capacity in 2 (38%) and 6-min walking distance decrease in 11 (73%). Important PFT abnormalities were observed in 7 (20%) children, all with p-ARDS. Increasing driving pressure (max plateau pressure-max positive end-expiratory pressure) was correlated with increasing CT-scan abnormalities and increasing functional residual capacity (more hyperinflation) (p < 0.005). CONCLUSIONS: Children surviving ARDS requiring mechanical ventilation present frequent respiratory symptoms, significant CT-scan and PFT abnormalities 1 year after PICUD. This highlights the need for a systematic pulmonary assessment of these children. Trial registration The study was registered on Clinical Trials.gov PRS (ID NCT01435889).

4.
Theranostics ; 11(19): 9217-9233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646367

RESUMO

Tryptophan (Trp)-catabolic enzymes (TCEs) produce metabolites that activate the aryl hydrocarbon receptor (AHR) and promote tumor progression and immunosuppression in glioblastoma. As therapies targeting TCEs or AHR become available, a better understanding of Trp metabolism is required. Methods: The combination of LC-MS/MS with chemical isobaric labeling enabled the simultaneous quantitative comparison of Trp and its amino group-bearing metabolites in multiple samples. We applied this method to the sera of a cohort of 43 recurrent glioblastoma patients and 43 age- and sex-matched healthy controls. Tumor volumes were measured in MRI data using an artificial neural network-based approach. MALDI MSI visualized Trp and its direct metabolite N-formylkynurenine (FK) in glioblastoma tissue. Analysis of scRNA-seq data was used to detect the presence of Trp metabolism and AHR activity in different cell types in glioblastoma. Results: Compared to healthy controls, glioblastoma patients showed decreased serum Trp levels. Surprisingly, the levels of Trp metabolites were also reduced. The decrease became smaller with more enzymatic steps between Trp and its metabolites, suggesting that Trp availability controls the levels of its systemic metabolites. High tumor volume associated with low systemic metabolite levels and low systemic kynurenine levels associated with worse overall survival. MALDI MSI demonstrated heterogeneity of Trp catabolism across glioblastoma tissues. Analysis of scRNA-seq data revealed that genes involved in Trp metabolism were expressed in almost all the cell types in glioblastoma and that most cell types, in particular macrophages and T cells, exhibited AHR activation. Moreover, high AHR activity associated with reduced overall survival in the glioblastoma TCGA dataset. Conclusion: The novel techniques we developed could support the identification of patients that may benefit from therapies targeting TCEs or AHR activation.


Assuntos
Glioblastoma/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Estudos de Coortes , Bases de Dados Genéticas , Feminino , Glioblastoma/sangue , Glioblastoma/genética , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Receptores de Hidrocarboneto Arílico/genética , Espectrometria de Massas em Tandem/métodos , Triptofano/sangue
5.
Nucleic Acids Res ; 49(20): 11666-11689, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718742

RESUMO

The inhibitor of DNA-binding 3 (ID3) is a transcriptional regulator that limits interaction of basic helix-loop-helix transcription factors with their target DNA sequences. We previously reported that ID3 loss is associated with mutational signatures linked to DNA repair defects. Here we demonstrate that ID3 exhibits a dual role to promote DNA double-strand break (DSB) repair, particularly homologous recombination (HR). ID3 interacts with the MRN complex and RECQL helicase to activate DSB repair and it facilitates RAD51 loading and downstream steps of HR. In addition, ID3 promotes the expression of HR genes in response to ionizing radiation by regulating both chromatin accessibility and activity of the transcription factor E2F1. Consistently, analyses of TCGA cancer patient data demonstrate that low ID3 expression is associated with impaired HR. The loss of ID3 leads to sensitivity of tumor cells to PARP inhibition, offering new therapeutic opportunities in ID3-deficient tumors.


Assuntos
Recombinação Homóloga , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição E2F1/metabolismo , Células HEK293 , Humanos , Proteínas Inibidoras de Diferenciação/química , Masculino , Proteínas de Neoplasias/química , Inibidores de Poli(ADP-Ribose) Polimerases/toxicidade , Poli(ADP-Ribose) Polimerases/metabolismo , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo
6.
Front Immunol ; 12: 590532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679737

RESUMO

The liver is the central hub for processing and maintaining homeostatic levels of dietary nutrients especially essential amino acids such as tryptophan (Trp). Trp is required not only to sustain protein synthesis but also as a precursor for the production of NAD, neurotransmitters and immunosuppressive metabolites. In light of these roles of Trp and its metabolic products, maintaining homeostatic levels of Trp is essential for health and well-being. The liver regulates global Trp supply by the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2), which degrades Trp down the kynurenine pathway (KP). In the current study, we show that isolated primary hepatocytes when exposed to hypoxic environments, extensively rewire their Trp metabolism by reducing constitutive Tdo2 expression and differentially regulating other Trp pathway enzymes and transporters. Mathematical modelling of Trp metabolism in liver cells under hypoxia predicted decreased flux through the KP while metabolic flux through the tryptamine branch significantly increased. In line, the model also revealed an increased accumulation of tryptamines under hypoxia, at the expense of kynurenines. Metabolic measurements in hypoxic hepatocytes confirmed the predicted reduction in KP metabolites as well as accumulation of tryptamine. Tdo2 expression in cultured primary hepatocytes was reduced upon hypoxia inducible factor (HIF) stabilisation by dimethyloxalylglycine (DMOG), demonstrating that HIFs are involved in the hypoxic downregulation of hepatic Tdo2. DMOG abrogated hepatic luciferase signals in Tdo2 reporter mice, indicating that HIF stability also recapitulates hypoxic rewiring of Trp metabolism in vivo. Also in WT mice HIF stabilization drove homeostatic Trp metabolism away from the KP towards enhanced tryptamine production, leading to enhanced levels of tryptamine in liver, serum and brain. As tryptamines are the most potent hallucinogens known, the observed upregulation of tryptamine in response to hypoxic exposure of hepatocytes may be involved in the generation of hallucinations occurring at high altitude. KP metabolites are known to activate the aryl hydrocarbon receptor (AHR). The AHR-activating properties of tryptamines may explain why immunosuppressive AHR activity is maintained under hypoxia despite downregulation of the KP. In summary our results identify hypoxia as an important factor controlling Trp metabolism in the liver with possible implications for immunosuppressive AHR activation and mental disturbances.


Assuntos
Homeostase , Hipóxia/metabolismo , Triptaminas/metabolismo , Triptofano/metabolismo , Animais , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hipóxia/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Fígado/metabolismo , Camundongos , Modelos Biológicos , Oxigênio/metabolismo
7.
Oncogenesis ; 9(11): 102, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214553

RESUMO

Lung cancer mortality largely results from metastasis. Despite curative surgery many patients with early-stage non-small cell lung cancer ultimately succumb to metastatic relapse. Current risk reduction strategies based on cytotoxic chemotherapy and radiation have only modest activity. Against this background, we functionally screened for novel metastasis modulators using a barcoded shRNA library and an orthotopic lung cancer model. We identified aryl hydrocarbon receptor (AHR), a sensor of xenobiotic chemicals and transcription factor, as suppressor of lung cancer metastasis. Knockdown of endogenous AHR induces epithelial-mesenchymal transition signatures, increases invasiveness of lung cancer cells in vitro and metastasis formation in vivo. Low intratumoral AHR expression associates with inferior outcome of patients with resected lung adenocarcinomas. Mechanistically, AHR triggers ATF4 signaling and represses matrix metalloproteinase activity, both counteracting metastatic programs. These findings link the xenobiotic defense system with control of lung cancer progression. AHR-regulated pathways are promising targets for innovative anti-metastatic strategies.

8.
Cancer Med ; 9(22): 8373-8385, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32991787

RESUMO

BACKGROUND: Gliomas evade current therapies through primary and acquired resistance and the effect of temozolomide is mainly restricted to methylguanin-O6-methyltransferase promoter (MGMT) promoter hypermethylated tumors. Further resistance markers are largely unknown and would help for better stratification. METHODS: Clinical data and methylation profiles from the NOA-08 (104, elderly glioblastoma) and the EORTC 26101 (297, glioblastoma) studies and 398 patients with glioblastoma from the Heidelberg Neuro-Oncology center have been analyzed focused on the predictive effect of DNA damage response (DDR) gene methylation. Candidate genes were validated in vitro. RESULTS: Twenty-eight glioblastoma 5'-cytosine-phosphat-guanine-3' (CpGs) from 17 DDR genes negatively correlated with expression and were used together with telomerase reverse transcriptase (TERT) promoter mutations in further analysis. CpG methylation of DDR genes shows highest association with the mesenchymal (MES) and receptor tyrosine kinase (RTK) II glioblastoma subgroup. MES tumors have lower tumor purity compared to RTK I and II subgroup tumors. CpG hypomethylation of DDR genes TP73 and PRPF19 correlated with worse patient survival in particular in MGMT promoter unmethylated tumors. TERT promoter mutation is most frequent in RTK I and II subtypes and associated with worse survival. Primary glioma cells show methylation patterns that resemble RTK I and II glioblastoma and long term established glioma cell lines do not match with glioblastoma subtypes. Silencing of selected resistance genes PRPF19 and TERT increase sensitivity to temozolomide in vitro. CONCLUSION: Hypomethylation of DDR genes and TERT promoter mutations is associated with worse tumor prognosis, dependent on the methylation cluster and MGMT promoter methylation status in IDH wild-type glioblastoma.


Assuntos
Neoplasias Encefálicas/genética , Ilhas de CpG , Metilação de DNA , Reparo do DNA , Epigenoma , Glioblastoma/genética , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Humanos , Proteínas Nucleares/genética , Intervalo Livre de Progressão , Regiões Promotoras Genéticas , Fatores de Processamento de RNA/genética , Medição de Risco , Fatores de Risco , Telomerase/genética , Fatores de Tempo , Proteína Tumoral p73/genética , Proteínas Supressoras de Tumor/genética
9.
Cell ; 182(5): 1252-1270.e34, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32818467

RESUMO

Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.


Assuntos
L-Aminoácido Oxidase/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Adulto , Idoso , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Glioma/imunologia , Glioma/metabolismo , Glioma/terapia , Células HEK293 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ratos
10.
Nat Commun ; 11(1): 931, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071302

RESUMO

Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of predictive biomarkers and limited accessibility of tissue for serial biopsies. Here, we investigate resistance mechanisms to anti-PD-1 and anti-CTLA-4 therapy in syngeneic hypermutated experimental gliomas and show a clear dichotomy and acquired immune heterogeneity in ICB-responder and non-responder tumors. We made use of this dichotomy to establish a radiomic signature predicting tumor regression after pseudoprogression induced by ICB therapy based on serial magnetic resonance imaging. We provide evidence that macrophage-driven ICB resistance is established by CD4 T cell suppression and Treg expansion in the tumor microenvironment via the PD-L1/PD-1/CD80 axis. These findings uncover an unexpected heterogeneity of response to ICB in strictly syngeneic tumors and provide a rationale for targeting PD-L1-expressing tumor-associated macrophages to overcome resistance to ICB.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/imunologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
11.
Br J Cancer ; 122(1): 30-44, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819194

RESUMO

Based on its effects on both tumour cell intrinsic malignant properties as well as anti-tumour immune responses, tryptophan catabolism has emerged as an important metabolic regulator of cancer progression. Three enzymes, indoleamine-2,3-dioxygenase 1 and 2 (IDO1/2) and tryptophan-2,3-dioxygenase (TDO2), catalyse the first step of the degradation of the essential amino acid tryptophan (Trp) to kynurenine (Kyn). The notion of inhibiting IDO1 using small-molecule inhibitors elicited high hopes of a positive impact in the field of immuno-oncology, by restoring anti-tumour immune responses and synergising with other immunotherapies such as immune checkpoint inhibition. However, clinical trials with IDO1 inhibitors have yielded disappointing results, hence raising many questions. This review will discuss strategies to target Trp-degrading enzymes and possible down-stream consequences of their inhibition. We aim to provide comprehensive background information on Trp catabolic enzymes as targets in immuno-oncology and their current state of development. Details of the clinical trials with IDO1 inhibitors, including patient stratification, possible effects of the inhibitors themselves, effects of pre-treatments and the therapies the inhibitors were combined with, are discussed and mechanisms proposed that might have compensated for IDO1 inhibition. Finally, alternative approaches are suggested to circumvent these problems.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Triptofano/metabolismo , Animais , Humanos , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Triptofano Oxigenase/metabolismo
12.
Front Immunol ; 10: 2762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866995

RESUMO

Abnormal circulation in solid tumors results in hypoxia, which modulates both tumor intrinsic malignant properties as well as anti-tumor immune responses. Given the importance of hypoxia in glioblastoma (GBM) biology and particularly in shaping anti-tumor immunity, we analyzed which immunomodulatory genes are differentially regulated in response to hypoxia in GBM cells. Gene expression analyses identified the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2) as the second most downregulated gene in GBM cells cultured under hypoxic conditions. TDO2 catalyses the oxidation of tryptophan to N-formyl kynurenine, which is the first and rate-limiting step of Trp degradation along the kynurenine pathway (KP). In multiple GBM cell lines hypoxia reduced TDO2 expression both at mRNA and protein levels. The downregulation of TDO2 through hypoxia was reversible as re-oxygenation rescued TDO2 expression. Computational modeling of tryptophan metabolism predicted reduced flux through the KP and lower intracellular concentrations of kynurenine and its downstream metabolite 3-hydroxyanthranilic acid under hypoxia. Metabolic measurements confirmed the predicted changes, thus demonstrating the ability of the mathematical model to infer intracellular tryptophan metabolite concentrations. Moreover, we identified hypoxia inducible factor 1α (HIF1α) to regulate TDO2 expression under hypoxic conditions, as the HIF1α-stabilizing agents dimethyloxalylglycine (DMOG) and cobalt chloride reduced TDO2 expression. Knockdown of HIF1α restored the expression of TDO2 upon cobalt chloride treatment, confirming that HIF1α controls TDO2 expression. To investigate the immunoregulatory effects of this novel mechanism of TDO2 regulation, we co-cultured isolated T cells with TDO2-expressing GBM cells under normoxic and hypoxic conditions. Under normoxia TDO2-expressing GBM cells suppressed T cell proliferation, while hypoxia restored the proliferation of the T cells, likely due to the reduction in kynurenine levels produced by the GBM cells. Taken together, our data suggest that the regulation of TDO2 expression by HIF1α may be involved in modulating anti-tumor immunity in GBM.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Triptofano Oxigenase/genética , Neoplasias Encefálicas/enzimologia , Hipóxia Celular , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Glioblastoma/enzimologia , Humanos , Tolerância Imunológica , Cinurenina/metabolismo , Ativação Linfocitária , Linfócitos T/imunologia , Triptofano/metabolismo
13.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923191

RESUMO

All cells and organisms exhibit stress-coping mechanisms to ensure survival. Cytoplasmic protein-RNA assemblies termed stress granules are increasingly recognized to promote cellular survival under stress. Thus, they might represent tumor vulnerabilities that are currently poorly explored. The translation-inhibitory eIF2α kinases are established as main drivers of stress granule assembly. Using a systems approach, we identify the translation enhancers PI3K and MAPK/p38 as pro-stress-granule-kinases. They act through the metabolic master regulator mammalian target of rapamycin complex 1 (mTORC1) to promote stress granule assembly. When highly active, PI3K is the main driver of stress granules; however, the impact of p38 becomes apparent as PI3K activity declines. PI3K and p38 thus act in a hierarchical manner to drive mTORC1 activity and stress granule assembly. Of note, this signaling hierarchy is also present in human breast cancer tissue. Importantly, only the recognition of the PI3K-p38 hierarchy under stress enabled the discovery of p38's role in stress granule formation. In summary, we assign a new pro-survival function to the key oncogenic kinases PI3K and p38, as they hierarchically promote stress granule formation.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estresse Fisiológico/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Arsenitos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
14.
Oncoimmunology ; 7(12): e1486353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524887

RESUMO

Tryptophan (Trp) metabolism is an important target in immuno-oncology as it represents a powerful immunosuppressive mechanism hijacked by tumors for protection against immune destruction. However, it remains unclear how tumor cells can proliferate while degrading the essential amino acid Trp. Trp is incorporated into proteins after it is attached to its tRNA by tryptophanyl-tRNA synthestases. As the tryptophanyl-tRNA synthestases compete for Trp with the Trp-catabolizing enzymes, the balance between these enzymes will determine whether Trp is used for protein synthesis or is degraded. In human cancers expression of the Trp-degrading enzymes indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan-2,3-dioxygenase (TDO2) was positively associated with the expression of the tryptophanyl-tRNA synthestase WARS. One mechanism underlying the association between IDO1 and WARS identified in this study is their joint induction by IFNγ released from tumor-infiltrating T cells. Moreover, we show here that IDO1- and TDO2-mediated Trp deprivation upregulates WARS expression by activating the general control non-derepressible-2 (GCN2) kinase, leading to phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) and induction of activating transcription factor 4 (ATF4). Trp deprivation induced cytoplasmic WARS expression but did not increase nuclear or extracellular WARS levels. GCN2 protected the cells against the effects of Trp starvation and enabled them to quickly make use of Trp for proliferation once it was replenished. Computational modeling of Trp metabolism revealed that Trp deficiency shifted Trp flux towards WARS and protein synthesis. Our data therefore suggest that the upregulation of WARS via IFNγ and/or GCN2-peIF2α-ATF4 signaling protects Trp-degrading cancer cells from excessive intracellular Trp depletion.

15.
Neuro Oncol ; 20(3): 367-379, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29016808

RESUMO

Background: O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is a predictive biomarker in glioblastoma. We investigated whether this marker furthermore defines a molecularly distinct tumor subtype with clinically different outcome. Methods: We analyzed copy number variation (CNV) and methylation profiles of 1095 primary and 92 progressive isocitrate dehydrogenase wildtype glioblastomas, including paired samples from 49 patients. DNA mutation data from 182 glioblastoma samples of The Cancer Genome Atlas (TCGA) and RNA expression from 107 TCGA and 55 Chinese Glioma Genome Atlas samples were analyzed. Results: Among untreated glioblastomas, MGMT promoter methylated (mMGMT) and unmethylated (uMGMT) tumors did not show different CNV or specific gene mutations, but a higher mutation count in mMGMT tumors. We identified 3 methylation clusters. Cluster 1 showed the highest average methylation and was enriched for mMGMT tumors. Seventeen genes including gastrulation brain homeobox 2 (GBX2) were found to be hypermethylated and downregulated on the mRNA level in mMGMT tumors. In progressive glioblastomas, platelet derived growth factor receptor alpha (PDGFRA) and GLI2 amplifications were enriched in mMGMT tumors. Methylated MGMT tumors gain PDGFRA amplification of PDGFRA, whereas uMGMT tumors with amplified PDGFRA frequently lose this amplification upon progression. Glioblastoma patients surviving <6 months and with mMGMT harbored less frequent epidermal growth factor receptor (EGFR) amplifications, more frequent TP53 mutations, and a higher tumor necrosis factor-nuclear factor-kappaB (TNF-NFκB) pathway activation compared with patients surviving >12 months. Conclusions: MGMT promoter methylation status does not define a molecularly distinct glioblastoma subpopulation among untreated tumors. Progressive mMGMT glioblastomas and mMGMT tumors of patients with short survival tend to have more unfavorable molecular profiles.


Assuntos
Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Mutação , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Glioblastoma/patologia , Humanos , Prognóstico , Taxa de Sobrevida
16.
J Ophthalmol ; 2016: 9489036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28116142

RESUMO

The aim of the study was to report postoperative corneal and surgically induced astigmatism (SIA) in patients with preoperative against-the-rule (ATR) astigmatism who underwent superior approach manual small incision cataract surgery (MSICS). 58 eyes of 58 cataract patients with preoperative ATR astigmatism were involved in this study. All patients had operable cataracts and underwent superior approach MSICS. Keratometric (K) readings were taken prior to surgery and at 12 weeks after surgery. Centroid values of SIA, preoperative astigmatism, and postoperative astigmatism were calculated using Cartesian coordinates based analysis. Wilcoxon signed rank test was used to compute statistical significance between mean preoperative and postoperative corneal astigmatism. Cohen's d was used as effect size measure. Centroid values of 1.42 D × 179, 2.48 D × 0, and 1.07 D × 1 were recorded, respectively, for preoperative astigmatism, postoperative astigmatism, and SIA. Wilcoxon signed rank test indicated that mean ± SD postoperative corneal astigmatism (2.80 ± 1.40 D) was statistically significantly greater than preoperative corneal astigmatism (1.49 ± 1.34 D), Z = -6.263, p < 0.0001. A high Cohen's d of 1.32 was found. Our results suggest statistical and clinically significant greater postoperative corneal astigmatism than preoperative corneal astigmatism for ATR astigmatism cataract patients who underwent superior approach MSICS.

17.
Pediatr Crit Care Med ; 9(1): 80-5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18477918

RESUMO

OBJECTIVE: The use of the first-order linear single compartment model when studying respiratory mechanics classically neglects inertance (Irs). We hypothesized that Irs would affect compliance (Crs) and resistance (Rrs) estimates in mechanically ventilated young children. DESIGN: Prospective study; single-center evaluation. SETTING: University-affiliated tertiary pediatric intensive care unit. PATIENTS: Forty-four patients with and without respiratory disease. INTERVENTIONS: Patients were studied during volume-controlled constant inspiratory flow ventilation. MEASUREMENTS AND MAIN RESULTS: Pressure (PaO) and flow (V') were analyzed according to two different models: a one-compartment first-order linear model according to PaO = (1/Crs) x V + Rrs x V' and a one-compartment second-order linear model according to PaO = (1/Crs) x V + Rrs x V' + Irs x V''. Irs was higher in children with vs. those without respiratory disease (median 0.00224 cm H2O/L/sec2, Q1-Q3 0.00180-0.00321 vs. median 0.00133 cm H2O/L/sec2, Q1-Q3 0.00072-0.00210; p < .001)). A positive correlation between Irs and the difference of Crs estimates between the first- and the second-order model was found in both groups (r = .84, p < .05 and r = .67, p < .05). Rrs estimates were similar in both groups. CONCLUSIONS: This study showed that the linear single-compartment model may not adequately estimate the respiratory mechanical properties in mechanically ventilated children, particularly in the presence of respiratory disease. Including an Irs term significantly diminished Crs estimates. A one-compartment second-order linear model might be a useful clinical tool in more adequately measuring respiratory mechanics and optimizing ventilatory settings in children with respiratory disease.


Assuntos
Complacência Pulmonar , Modelos Estatísticos , Respiração Artificial/estatística & dados numéricos , Mecânica Respiratória/fisiologia , Algoritmos , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica , Respiração com Pressão Positiva/estatística & dados numéricos , Estudos Prospectivos , Insuficiência Respiratória/terapia
18.
Med Sci Monit ; 13(4): CR182-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17392648

RESUMO

BACKGROUND: Invasive blood pressure (BP) monitoring (IBPM) is recommended in the treatment of fluid-refractory septic shock, but has been suspected of inducing distal ischemia in children with purpura fulminans (PF). The aim of the study was to determine if IBPM increases the risk of limb and skin necrosis and alters outcome of children with PF. MATERIAL/METHODS: Children admitted with PF and suspected meningococcal sepsis to two PICUs were retrospectively studied. BP was invasively monitored in one unit (arterial catheter: AC group), but not in the second (controls). Treatment was otherwise in accordance with recent guidelines. Children from the two units were matched according to age and PRISM score value. Mortality and limb or skin necrosis rates were compared and catheter-related complications were analyzed. RESULTS: Among 156 children (1996-2004), 46 from each unit (median age: 25 months, median PRISM value: 19) could be matched. The mortality rate was 19.5% in the AC group and 21.7% in the control group (p=0.8). Nine children (6 survivors) in the AC group and 9 (8 survivors) of the controls had distal necroses (p=1). Fifty-three ACs were inserted in the AC-group children. Catheter-related complications were three hemorrhages or hematomas, one local thrombosis, and six transient distal ischemia; there were no major catheter-related complications. Distal necrosis incidence was not increased on limbs where catheters were inserted. CONCLUSIONS: In this series of children with PF and suspected meningococcal sepsis, BP was monitored by arterial catheter in one unit; this did not affect limb and skin necrosis and mortality rates.


Assuntos
Determinação da Pressão Arterial/métodos , Cateteres de Demora/efeitos adversos , Extremidades/patologia , Vasculite por IgA/complicações , Monitorização Fisiológica/métodos , Necrose/etiologia , Pele/patologia , Criança , Pré-Escolar , Humanos , Medição de Risco
19.
Pediatr Crit Care Med ; 7(3): 231-6, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16575346

RESUMO

OBJECTIVE: To compare measurements of cardiac output (CO) and cardiac index (CI) obtained by a recently developed noninvasive continuous cardiac output system, NICO (CONICO), and transthoracic Doppler echocardiography (COTTE) in mechanically ventilated children. DESIGN AND SETTING: Prospective study in a university-affiliated tertiary pediatric intensive care unit. PATIENTS: A total of 21 mechanically ventilated children, weighing >15 kg, in stable respiratory and hemodynamic condition. MEASUREMENTS: Sets of three successive measurements of CO with the NICO system and transthoracic Doppler echocardiography were obtained. Bland-Altman analysis was used to compare the agreement between the two methods. RESULTS: The mean +/- sd CO values were 4.06 +/- 1.43 L/min for CONICO and 4.67 +/- 1.78 L/min for COTTE. Bias +/- sd between the two methods was -0.61 +/- 0.94 L/min. The variability of the difference between the two methods increased as the magnitude of the CO measurement increased. Similar results were obtained for cardiac index: 4.01 +/- 1.40 L.min.m for CINICO and 4.59 +/- 1.48 L.min.m for CITTE. Bland-Altman analysis revealed a nonuniform relationship between CI difference and the magnitude (y = -0.299 - 0.0655 x mean). The variability of the differences did not increase as the magnitude of the CO measurement increased (sd of estimate was 0.827 L.min.m). With both CONICO and CINICO, each measurement was highly repeatable, with coefficient of variation of only 2.88% +/- 2.31%. Repeatability with Doppler echocardiography was 7.02% +/- 4.33%. CONCLUSIONS: The NICO system is a new device that measures CO easily and automatically in mechanically ventilated children weighing >15 kg. CO values obtained with this technique were in agreement with those obtained with Doppler echocardiography in children in respiratory and hemodynamic stable condition. The NICO system needs further investigation in children in unstable respiratory and hemodynamic condition.


Assuntos
Débito Cardíaco , Monitorização Fisiológica/instrumentação , Respiração Artificial , Adolescente , Criança , Pré-Escolar , Estado Terminal , Ecocardiografia Doppler , Feminino , Hemodinâmica , Humanos , Modelos Lineares , Masculino , Estudos Prospectivos
20.
Crit Care ; 9(6): R798-807, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16356229

RESUMO

INTRODUCTION: We conducted the present study to determine whether a combination of the mechanical ventilation weaning predictors proposed by the collective Task Force of the American College of Chest Physicians (TF) and weaning endurance indices enhance prediction of weaning success. METHOD: Conducted in a tertiary paediatric intensive care unit at a university hospital, this prospective study included 54 children receiving mechanical ventilation (> or = 6 hours) who underwent 57 episodes of weaning. We calculated the indices proposed by the TF (spontaneous respiratory rate, paediatric rapid shallow breathing, rapid shallow breathing occlusion pressure [ROP] and maximal inspiratory pressure during an occlusion test [Pimax]) and weaning endurance indices (pressure-time index, tension-time index obtained from P(0.1) [TTI1] and from airway pressure [TTI2]) during spontaneous breathing. Performances of each TF index and combinations of them were calculated, and the best single index and combination were identified. Weaning endurance parameters (TTI1 and TTI2) were calculated and the best index was determined using a logistic regression model. Regression coefficients were estimated using the maximum likelihood ratio (LR) method. Hosmer-Lemeshow test was used to estimate goodness-of-fit of the model. An equation was constructed to predict weaning success. Finally, we calculated the performances of combinations of best TF indices and best endurance index. RESULTS: The best single TF index was ROP, the best TF combination was represented by the expression (0.66 x ROP) + (0.34 x Pimax), and the best endurance index was the TTI2, although their performance was poor. The best model resulting from the combination of these indices was defined by the following expression: (0.6 x ROP) - (0.1 x Pimax) + (0.5 x TTI2). This integrated index was a good weaning predictor (P < 0.01), with a LR+ of 6.4 and LR+/LR- ratio of 12.5. However, at a threshold value < 1.3 it was only predictive of weaning success (LR- = 0.5). CONCLUSION: The proposed combined index, incorporating endurance, was of modest value in predicting weaning outcome. This is the first report of the value of endurance parameters in predicting weaning success in children. Currently, clinical judgement associated with spontaneous breathing trials apparently remain superior.


Assuntos
Músculos Respiratórios/fisiopatologia , Desmame do Respirador/métodos , Criança , Pré-Escolar , Cuidados Críticos/métodos , Feminino , Humanos , Lactente , Masculino , Modelos Teóricos , Avaliação de Resultados em Cuidados de Saúde , Resistência Física , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC , Insuficiência Respiratória/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...